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CHAPTER 1 

INTRODUCTION 

1.1 The Cornea 

The cornea is the transparent, dome-shaped anterior portion of the eye. It measures 

around 0.9 mm thick in the center, and 1.1mm in the periphery. The cornea serves two 

specialized functions: i) It is the main refractive element of the visual system; and ii) it provides a 

protective barrier between the external environment and the inner eye (Kumar and Yu, 2006). 

The cornea is composed of five layers: corneal epithelium, Bowman’s layer, stroma, Decemet’s 

membrane, and endothelium (Forrester, 2008).  

1.1.1 Corneal epithelium 

The corneal epithelium is a stratified, squamous non-keratinized epithelium, ranging 

from 50 to 60 µm in thickness (Fig. 1A). The surface of corneal epithelium is characterized by 

abundant microvilli and ridges, which house a glycocalyx coat that interacts with and stabilizes 

the tear film. Below the tear film lays the epithelium, which forms a physical barrier via tight 

junctions that prevents the invasion of bacteria. Cell turnover starts from the mitotic activity in 

the limbal basal layer, which displaces existing cells both superficially and centripetally. The 

epithelium responds rapidly to rupture by cell migration on the wound margin to cover the 

wound, followed by cell proliferation to restore the lost cell population. The basal epithelial cells 

are anchored on a thin, but prominent basal lamina. Antigen presenting dendritic cells (the 

Langerhan’s cells) are present in the limbus and peripheral cornea, but their population 

decreases sharply towards the center of the cornea (Forrester, 2008). 

1.1.2 Bowman’s layer and Stroma 

Bowmans’ layer is an acellular region of the stroma consisting of fine, randomly 

arranged collagen fibrils. The anterior part of the layer is separated from the epithelium by the 
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thin basal lamina, while the posterior section merges with the stroma. Bowman’s layer 

terminates at the limbus (Forrester, 2008). 

The corneal stroma makes up the majority of the cornea, consisting of dense connective 

tissue of incredible regularity and keratocytes. The stroma consists of mostly thick, flattened 

collagenous lamellae oriented parallel to the corneal surface, with flattened and modified 

fibroblasts, known as keratocytes, squeezed in between the lamellae (Fig. 1C, D). The stroma is 

normally free of blood or lymphatic vessels, but sensory nerve fibers that terminate at the 

epithelium pass through the stroma (Forrester, 2008). Studies have shown that there is a 

population of macrophages throughout the stroma (Chinnery et al., 2007).  The stromal 

macrophages and epithelial dendritic cells are of monocytic lineage, and are the resident 

antigen presenting cells in the cornea. 

1.1.3 Decemet’s membrane and the endothelium 

Decemet’s membrane is a thin, modified basement membrane of the corneal 

endothelium that lies between the posterior stroma and the endothelium (Fig. 1B, E). The 

corneal endothelium is simple squamous epithelium at the posterior surface of the cornea. It 

anchors on the Decemet’s membrane and has an essential role in maintaining the cornea 

(de)hydrated and transparent (Forrester, 2008).  

1.2 Corneal Defensive Mechanisms 

The cornea is constantly exposed to a wide array of microorganisms. The ability of the 

cornea to recognize pathogens and eliminate them on a timely fashion is critical to maintain 

corneal transparency and preserve sight. Innate immunity is the first line of defense against 

corneal infection, and there are many elements of the innate defense machinery, including tear 

film, epithelium, keratocytes, and polymorphonuclear (PMN) cells (Akpek and Gottsch, 2003).  
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The cornea is coated with a layer of tear film that flushes away foreign particles from the 

ocular surface, and transports antimicrobial proteins (AMPs) and immunoglobulin (especially 

IgA) to the ocular surface to limit the colonization of bacteria (Pepose et al., 1996). The major 

AMPs present in the ocular surface are defensins and LL-37 which directly kill microbes through 

electrostatic disruption of the microbial cell membrane (McDermott, 2009). While invading 

pathogens can directly infect the stroma (for example, in a penetrating wound), in most cases 

(such as contact lens wearing) the epithelial cells are the first cells to encounter the pathogens.  

Therefore, these cells act as sentinels that possess the ability to detect the presence of 

pathogens and coordinate the innate defense system.  Upon injury or infection, the corneal 

epithelium releases chemotactic factors such as IL-1β, IL-6, IL-8, and TNFα (Hazlett, 2004a; 

Ruan et al., 2002; Xue et al., 2000), which recruit PMNs, and lymphocytes (Nassif, 1996). PMNs 

are critical effector cells in the cornea and play vital roles in phagocytosis and microbial killing 

(Burg and Pillinger, 2001). Keratocytes in the stroma also have a defensive role during microbial 

invasion, by synthesizing IL-6 and IL-8 (Akpek and Gottsch, 2003). The other components that 

participate in corneal innate immunity are the Langerhan’s cells (dendritic cells), which 

orchestrate B and T lymphocyte activity in the cornea, and immunoglobulins (IgA and IgG) that 

are concentrated in the stromal layer (Kumar and Yu, 2006). Resident macrophages have also 

been discovered in the murine corneal stroma and may play a role in host immune responses 

(Brissette-Storkus et al., 2002).  

Figure 1 . Histology of cornea and its constituent layers. (A) Electron microscope of corneal 
epithelium. B, basal layer; W, wing cells; S, superficial layer. (B) Light micrograph of the five 
layers of the human cornea. Ep, epithelium; BL, Bowman’s layer; S, stroma; DM, Descemet’s 
membrane; E, endothelium. (C) Electron microphage illustrating keratocyte (K) among regularly 
spaced collagenous lamellae. Inset – higher magnification showing collagen fibers. (D) 
Schematic diagram showing arrangement of the collagenous lamella (CL) and the interposed 
keratocytes (K). (E) Schematic diagram of the human eye in horizontal section. AC, anterior 
chamber. Corneoscleral envelope (blue), uveal tract (orange), inner neural layer (purple) 
(Forrester, 2008). 
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1.3 Bacterial Keratitis 

Bacterial infection of the cornea is considered as a relatively rare but serious medical 

condition that requires urgent medical attention due to potential vision reduction or loss in the 

affected eye. Factors that increase the chances of infection include extended wear of soft 

contact lenses; ocular surgical procedures; ocular disease, and ocular injury (Fig. 2). Infecting 

bacteria come from environmental sources, patients’ skin and nasopharyngeal flora, contact 

lens care solution or lens cases, topical drugs, irrigation solutions or ocular instruments (Fleiszig 

and Evans, 2002). In the United States, microbial keratitis is most frequently associated with 

complications related to contact lens usage, with an incidence rate of 25,000 to 30,000 cases 

per year (Khatri et al., 2002). 

The most common cause of bacterial infection in contact lens wearers is the Gram-

negative pathogen, Pseudomonas aeruginosa (P. aeruginosa). It has an arsenal of cell-

associated and extracellular virulence factors, including toxins and proteases that help it to 

initiate and maintain infection. P. aeruginosa can activate several pathways of the immune 

system during bacterial keratitis. Such activation often involves receptors on the corneal 

epithelial cells called Toll-like receptors (TLRs), especially TLR5 (Kumar and Yu, 2006; Zhang 

et al., 2003b). TLR5 recognizes the major component protein of flagella, flagellin, resulting in the 

epithelial production of cytokines/chemokines that recruit white blood cells and antimicrobial 

peptides that kill invading pathogens directly. The infiltrated white blood cells, mainly neutrophils 

(polymorphonuclear leukocytes), to the infection site can phagocytose and kill the bacteria. 

However, continuous presence and recruitment of white blood cells to the infection site leads to 

tissue destruction, which could eventually lead to scaring and vision loss. TLR5 also mediates 

the expression of proteins that are directly antimicrobial, such as defensins, from corneal 

epithelial cells (Willcox, 2007). Due to the increase in antibiotic resistant strains of bacteria and 

unsuccessful attempts to use antimicrobial peptides to control keratitis, there is an urgent need 
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to better understand the pathways involved in induction and suppression of inflammation by this 

bacterium so that improved therapeutic strategies can be developed (Hazlett, 2004a). 

 

Figure 2. Bacterial keratitis. Left, bacterial keratitis following 
lasik surgery; Right, a perforated corneal ulcer caused by P. 
aeruginosa infection. 
("http://img.medscape.com/pi/emed/ckb/ophthalmology/1189694-1221604-
327.jpg," ; "http://www.revophth.com/publish/images/1_119_1.jpg,")18, 

19(18,19). 

 

1.4 Flagellin and Toll-like Receptor 5 (TLR5) 

Bacterial flagella are complex organelles composed of a basal body, hook, motor, and 

filament, which play a central role in motility and chemotaxis. The protein flagellin is the major 

protein of the flagellar filament with highly conserved sequences at the amino and carboxyl 

termini, which play critical roles in the structure and function of flagella. The region between the 

conserved termini is termed the hypervariable region due to its high variability in length and 

sequence. Analysis of the crystal structure of flagellin has shown that it is a “boomerang-

shaped” protein with four major domains (Fig. 3, box). The D0 domain is comprised of the amino 

and carboxyl termini and is responsible for polymerization. The D1 domain is primarily α-helical 

in structure and contains highly conserved regions required for flagellin signaling. The D2 and 

D3 domains are the hypervariable domains consisting of mostly β-strands (Honko and Mizel, 

2005). 
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In mucosa, the flagellar structure is required for bacterial motility, adhesion, invasion and 

secretion of virulence factors (Ramos et al., 2004). Flagella can serve in aiding the attachment 

of bacteria to the host cells, and assisting bacterial invasion (Honko and Mizel, 2005). Also 

flagellum can act as a “syringe”, mediating the secretion of several extracellular toxins, including 

the phospholipase Yp1A (Young et al., 1999).  

 

Figure 3. Structure and organization of flagellum and flagellin. Flagella structure is 
comprised of a hook (green) and a filament, referred to as flagellum. Schematic 
transversal and longitudinal views of the flagellum are also shown (center figures). On 
the right is the ribbon diagram of flagellin, which is color-coded to show the domains 
(Ramos et al., 2004).  

1.5 TLRs of the Cornea and their PAMPs 

Flagellin is recognized by the cell surface receptor TLR5. At present, 10 (in human) 

TLRs have been identified. TLRs 1-9 are common to both human and mouse, while TLR10 is 

unique to humans and TLR11-13 belong to the mouse (Kawai and Akira, 2007). TLR’s 

extracellular domain contains leucine-rich repeats (LRRs), which are responsible for binding of 

the ligand (Honko and Mizel, 2005). The intracellular domain contains a region called the Toll/IL-
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1R (TIR) domain, which exhibits high homology with that of Interleukin-1 receptor (IL-1R) (Fig. 

4). TLRs recognize Pathogen-Associated Molecular Patterns (PAMPs) - conserved structural 

moieties of pathogens that are critical for their survival. This gives the host three big 

advantages. Firstly, PAMPs are produced only by microbes and not the host, which enables the 

host to distinguish between self and non-self. Secondly, as PAMPs are critical for the survival of 

the microbe, mutations or loss of patterns can be lethal. Therefore, PAMPs do not have a high 

mutation rate. Lastly, PAMP sequences are invariant between microorganisms of a given class. 

Hence, PAMPs are ideal targets for detection by the innate immune system (Kumar and Yu, 

2006). Table 1 summarizes common PAMPs of P. aeruginosa that are involved in infectious 

keratitis and the TLRs that recognize them. 

 

Figure 4.  Toll-like receptor 5 with bound flagellin monomers. The leucine-rich repeats 
(yellow) detect distinct regions of flagellin monomers. TLR5 requires the TLR-specific 
adaptor molecule MyD88 that transfers the stimulus from TIR to downstream 
molecules of the signaling cascade, such as IRAK1. IRAK1, interleukin-1 receptor-
associated kinase; MyD88, myeloid differentiation factor 88; TIR, Toll–interleukin 1 
receptor domain; TLR5, Toll-like receptor 5 (Ramos et al., 2004). 

 
Pathogen PAMP PRR 

Pseudomonas aeruginosa Flagellin 
Lipoprotein 
LPS 

TLR5 
TLR2 
TLR4 
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Table 1. The PAMPs of Pseudomonas aeruginosa and their respective TLRs (Kumar 
and Yu, 2006). 

TLR5’s only ligand discovered thus far is flagellin (Eaves-Pyles et al., 2001). Studies by 

Andersen et al. demonstrated that TLR5 is only activated by flagellated bacteria, as compared 

to non-flagellated bacteria, suggesting that flagellin is a specific ligand for TLR5 (Andersen-

Nissen et al., 2005; Hayashi et al., 2001). Several groups, including our lab, have reported that 

the major function of epithelial TLR5 is sensing of Gram negative bacteria, such as P. 

aeruginosa, and initiating the signaling pathways leading to NF-κB activation and inflammation 

in mucosal surfaces of our body including the cornea, intestine and airway/lung (Tallant et al., 

2004; Zhang et al., 2003a; Zhang et al., 2005). According to these data, P. aeruginosa strains 

that lack the flagellin gene are almost nonfunctional in inducing NF-κB activation and 

proinflammatory cytokine production. It seems that TLR2 plays only a minor, if any, role in 

sensing of P. aeruginosa by corneal epithelial cells, while TLR4 is not responsive to LPS since it 

lacks the critical co-receptor, MD-2 (Zhang et al., 2009). TLR5 is expressed in the internal cell 

layers of the corneal epithelium and on the basolateral side of intestinal epithelial cells (Gewirtz 

et al., 2001a; Zhang et al., 2003a). This means that in normal conditions, TLR5 is separated 

from the bacteria or bacterial products that can be found on the lumen or mucosal surface. 

However, when the apical barrier is breached and TLR5 becomes exposed to pathogens, the 

epithelial cells initiate the innate immune response (Kumar and Yu, 2006). Studies by West et 

al. evaluated the localization of TLR5 during flagellin signaling by blocking flagellin/TLR5 

internalization using monodansylcadverine, and concluded that TLR5 signaling occurs at the 

cell membrane and does not require internalization (West et al., 2005).  

1.6 TLR5 signaling 

To date, two major TLR signaling pathways have been identified: MyD88-dependent and 

MyD88-independent (TRIF-dependent) pathways. All TLR activation culminates in the activation 
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of nuclear factor (NF)-κB and activating protein-1 (AP-1) (Kawai and Akira, 2006). Flagellin 

signaling via TLR5 is MyD88-dependent. Therefore, we will discuss the MyD88-dependent 

pathway in more detail (Fig. 5).   

Normally, upon ligand binding, TLRs dimerize and undergo conformational changes that 

favor the recruitment of the adaptor molecule IL-1R-associated kinase 1 (IRAK-1) (Burns et al., 

1998; Wesche et al., 1997). However, in the case of TLR5, IRAK-1 seems to be constitutively 

associated with TLR5 (Mizel and Snipes, 2002), most probably through the adaptor molecule, 

MyD88, which interacts with the intracellular domain of TLR5 through homotypic interactions of 

the TIR domain (Burns et al., 1998). Flagellin binding  causes the dissociation of phosphorylated 

and activated IRAK-1 from the TLR5/MyD88 complex (Mizel and Snipes, 2002) to associate 

with tumor necrosis factor receptor-associated factor 6 (TRAF6) (Kumar and Yu, 2006). TRAF6 

forms a complex with Ubc13 and Uev1A, becoming the E3 ligase to promote synthesis of lysine 

63-linked polyubiquitin chains (Chen, 2005). Lysine 63-linked ubiquitination is linked with 

various cellular responses such as signal transduction and cellular localization (Sun and Chen, 

2004).  TRAF6 then associates with and activates TGF-β-activated protein kinase (TAK-1), a 

member of the MAP kinase kinase kinase (MAP3K) family, in an ubiquitin-dependent manner 

(Chen, 2005). TAK-1 is constitutively associated with TAK-1 binding proteins, TAB-1, TAB-2 and 

TAB-3. Particularly, TAB-2 and TAB-3 bind lysine 63-linked polyubiquitination chains via zinc-

finger domains, resulting in the activation of TAK-1(Chen, 2005). In turn, TAK-1 phosphorylates 

the inhibitor of NF-κB (IκB)-kinase (IKK) complex, which is formed by IKKa, IKKb, and 

(NEMO)/IKKg. Consequently, IκB becomes phosphorylated by the IKK complex and becomes 

the target for ubiquitination and subsequent degradation by the 26S proteosome. In 

unstimulated cells, NF-kB is kept inactive by interacting with inhibitor of NF-κB (IκB). NF-κB is 

then released into the nucleus to activate transcription of κB sites. NF-κB is a dimeric 

transcription factor that belongs to the Rel-homology domain-containing protein family, which 
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includes p65/RelA, p50/NF-κB1, p52/NF-κB2, RelB and c-Rel (Karin and Greten, 2005). The 

most widely known and prototypical NF-κB is thought to be the heterodimer consisting of 

subunits p65 and p50. Moreover, TAK-1 simultaneously phosphorylates two members of the 

MAP kinase kinase family, MKK3 and MKK6, which activate c-Jun N-terminal kinase (JNK) and 

p38, respectively (Chen, 2005). Furthermore, extracellular signal-related kinase (ERK) is 

activated in response to TLR ligands through the activation of MEK1 and MEK2. TAK-1 plays a 

key role in the cellular response to a variety of stimuli, as TAK-1 -deficient cells fail to activate 

NF-κB and MAP kinases  (p38, JNK and ERK) in response to not only TLR stimuli, but also to 

TNFα and IL-1β (Sato et al., 2005). Activated p38, JNK and ERK mediate the activation of AP-1. 

AP-1 is a dimeric basic region leucine zipper (bZIP) protein composed of members of Jun, Fox, 

activating transcription factor (ATF), and the Maf subfamily, which binds to TPA-response 

elements or cAMP-response elements. Of the AP-1 family proteins, c-Jun is believed to play a 

central role in the inflammatory response (Shaulian and Karin, 2002).  

Flagellin ligation of epithelial TLR5 also causes the rapid activation of phosphoinositide 

3-kinase (PI3K) activation which serves to limit pro-inflammatory gene expression mainly via 

activation of phosphotases that downregulate p38 (Yu et al., 2006). We have shown that 

prolonged activation of TLR5 by flagellin dampens NF-κB activation but persistently activates 

PI3K-AKT pathways in two phases. The first phase of activation is associated with NF-κB and 

declines to the basal level in about 2 hrs, and the second arises around 8 h and persists in the 

presence of flagellin.  The p85 subunit of PI3K physically interacts with MyD88 in response to 

flagellin, resulting in the activation of the catalytic subunit p110 (Rhee et al., 2006). This 

pathway may be responsible for the first phase activation. We propose different pathways 

leading to these two phases of PI3K-AKT activation. The work from our lab demonstrated that 

flagellin transactivates epidermal growth factor receptor (EGFR) leading to activation of PI3K-

AKT and ERK pathways. This is likely responsible for the second phase of PI3K and AKT 
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activation (Zhang et al., 2004). STAT1 activation by TLR5 stimulation has been documented in 

osteoclasts. Ha et al. showed that TLR5 stimulation with flagellin caused STAT1 serine727 and 

tyrosine701 phosphorylation (Ha et al., 2008).  

 

Figure 5. The TLR5 signaling pathway. Modified from (Kumar and Yu, 2006). 
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The overall downstream outcome of TLR5 signaling is the transcriptional activation of 

approximately 500 genes that protect cells against various challenges (Zeng et al., 2003). 

These activated genes include those with direct antibacterial function (e.g. defensins and LL-

37), immune cell chemoattractants, and a number of general stress-induced genes such as 

heat-shock proteins (Vijay-Kumar et al., 2008a). Defensins are small cationic peptides 

containing sulfide bonds that can damage the bacterial cell membrane, but they also possess 

chemotactic properties (Ganz, 2003). Human corneal epithelial cells (HCECs) constitutively 

express human β-defensin-1, but can be stimulated to induce human β-defensin-2 (hBD-2) 

expression in response to P. aeruginosa infection (Huang et al., 2007; Kumar et al., 2007; 

McDermott et al., 2001). It seems that hBD-2 acts through the MAP kinase and NF-κB pathways 

when HCECs are stimulated with a proinflammatory cytokine, IL-1β (McDermott et al., 2003). 

LL-37 is another antimicrobial peptide that is induced in response to P. aeruginosa ocular 

infection (Kumar et al., 2007). LL-37 is derived from human cationic antimicrobial protein 18 

(hCAP18), and possesses other biological activities, such as chemoattraction and wound 

healing (Lehrer and Ganz, 2002). 

Flagellin induces the expression and secretion of IL-8 in HCECs, which is essential for 

recruitment of neutrophils and macrophages at sites of injury. Furthermore, epithelial cells also 

upregulate TNFα, IL-6, inducible nitric oxide synthase (iNOS) and nitric oxide, matrix 

metalloproteinase (MMP)-7, and macrophage inflammatory protein (MIP)-2α (Ramos et al., 

2004; Zheng et al., 2010). These factors participate in anti-microbial activity, recruitment of 

professional killer and antigen-presenting phagocytes, and production of inflammatory 

mediators that activate phagocytes (Ramos et al., 2004). 

Recent studies by the Gewirtz lab have shown that flagellin treatment protects against a 

variety challenges, such as chemicals, γ-irradiation, bacteria, and viruses (Vijay-Kumar et al., 

2008a).  Their group also demonstrated the non-pathogenic effects of systemically administered 
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flagellin compared to LPS. LPS, when administered systemically, induces the expression of a 

panel of proinflammatory cytokines, also known as a “cytokine storm” (Lin and Yeh, 2005). Their 

results showed that very little TNF-α, IL-1α, and RANTES, and only modest levels of IL-6 were 

induced by equal or 5-fold greater amounts of flagellin, compared to LPS. In general, their 

results indicate that, compared to LPS, flagellin has less potential to induce severe adverse 

systemic events (Vijay-Kumar et al., 2008a). Thus, these studies suggest that therapeutic 

administration of flagellin may provide temporary broad protection against a variety of adverse 

stimulants. In addition, potential uses of flagellin in vaccine formulations to promote mucosal 

immunity are being explored, due to its highly effective mucosal adjuvant activity (Ben-Yedidia 

and Arnon, 2007). Besides, flagellin has also been linked with some epithelium–based cancers 

(carcinomas), as studies have shown that flagellin promotes necrosis of tumors in vivo, possibly 

by promoting immune cell recruitment to the tumor site (Rhee et al., 2008). 

In modulating adaptive immunity, flagellin promotes the development of T helper 2 

(Th2)-biased and antibody response (Didierlaurent et al., 2004). Flagellin induces the 

maturation of TLR5-expressing DCs, but does not increase the production of IL-12, a T helper 1 

(Th1)-driving cytokine, in DCs, which may be why a Th2 response is favored (Means et al., 

2003). The direct activation of DCs within mucosa by flagellin might participate in Th2 

differentiation, which favors antibody responses (Ramos et al., 2004). In epithelial cells, flagellin 

induces the transient production and secretion of a DC-specific cytokine, CCL20, in a NF-κB-

dependent manner, which attracts immature DCs in a CCL20-dependent manner (Sierro et al., 

2001). At the same time, IL-8 is also secreted to attract PMNs to the site, which provides the 

proinflammatory signals for DC maturation (Gewirtz et al., 2001b). 

1.8 Flagellin–induced Cell Reprogramming 

The ability to modulate the destructive consequences of uncontrolled inflammation 

caused by TLR signaling could be greatly beneficial for the host. Studies using several TLR 
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agonists have demonstrated that initial exposure to a TLR agonist results in a state of tolerance, 

more recently seen as cell reprogramming (Cavaillon and Adib-Conquy, 2006; Marsh et al., 

2009; Nahid et al., 2011a). In the case of the TLR4 agonist, LPS, a number of mechanisms 

have been proposed, including the downregulation of TLR4 expression on the cell surface, 

degradation of IRAK-1, or TLR signaling suppression by IRAK-M (Buckley et al., 2006; 

Vartanian and Stenzel-Poore, 2010). 

Flagellin also induces self-tolerance in a variety of cell types. For example, Mizel and 

Snipes (Mizel and Snipes, 2002) reported that flagellin-treated human peripheral blood 

monocytes or THP1 cells failed to produce TNF-α in a second exposure to flagellin. Flagellin 

tolerance is not due to reduced TLR5 surface expression or IRAK-1 degradation. Flagellin 

induced tolerance rapidly, within 2 hours after initial exposure to flagellin, and was protein-

synthesis independent (Mizel and Snipes, 2002). Flagellin-induced tolerance or 

“reprogramming" is transient, with responsiveness returning to its original level after 12-96 hours 

(Honko and Mizel, 2005). In flagellin-reprogrammed cells, IRAK-1 activation is dramatically 

reduced in response to flagellin, indicating that reprogramming occurs at an early stage in TLR5 

signaling (Mizel and Snipes, 2002). The interaction between flagellin and TLR5 is hypothesized 

to promote the release of phosphorylated IRAK-1 from TLR5 in exchange for unphosphorylated 

IRAK-1.  However, in flagellin-reprogrammed cells, this exchange mechanism appears to be 

blocked, preventing the release of active IRAK-1 and the initiation of downstream signaling 

events (Honko and Mizel, 2005). 

Studies from our lab using primary and immortalized HCECs, and B6 mice corneas have 

also shown that pretreatment with a low dose of flagellin can induce a reprogrammed state that 

is more resistant towards a subsequent higher dose of flagellin or live bacteria (P. aeruginosa). 

This was characterized in vitro by impaired activation of NF-κB, p38 and JNK pathways and 

reduced IL-8 and TNFα production. However, we also found that there was enhanced 
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expression of antimicrobial genes, such as LL-37 and hBD2 (Kumar et al., 2008; Kumar et al., 

2007). This could be partially explained by more recent studies in our lab, which demonstrated 

that the production of antimicrobial peptides is uncoupled from the inflammatory response 

mediated by NF-κB. It seems that the EGFR pathway, which is indirectly activated in response 

to flagellin, is involved in AMP production (Gao et al., 2010). In vivo studies also showed that 

subconjunctival and intraperitoneal administration of flagellin 24 hours prior to P. aeruginosa 

inoculation resulted in suppression of the inflammatory response and enhancement of bacterial 

and fungal clearance (Gao et al., 2011a; Kumar et al., 2008; Kumar et al., 2007). Further 

analysis proved that flagellin pretreatment resulted in the inhibition of late-stage PMN infiltration 

(but not early-stage), decrease in proinflammatory cytokines, and enhancement of bacterial 

clearance (Kumar et al., 2008). We have also been able to reproduce the results by applying 

flagellin topically on to the cornea (Kumar et al., 2010b).  These results suggest a beneficial 

effect of flagellin in modulating the host’s innate immune system, and warrant further 

investigation into the underlying mechanism of flagellin-mediated cell reprogramming/tolerance. 

1.9 Interferon (IFN) γ/Jak/STAT signaling 

IFNs are widely expressed cytokines regarded as the first line of defense against viral 

infections. The IFN family includes two main classes of related cytokines: type I IFNs and type II 

IFNs. All type I IFNs, which includes IFNα, IFNβ, IFNε, IFNκ, and IFNω in humans, bind a 

common cell-surface receptor, type I IFN receptor. There is only one type II IFN, IFNγ, which 

binds to the type II IFN receptor. Type II IFN receptors have multichain structures, composed of 

at least two distinct subunits:  IFNGR1 and IFNGR2 (for type II IFNs). Each of these subunits 

interacts with a member of the Janus activated kinase (JAK) family at the intracellular portion of 

the receptor: IFNGR1 with JAK1, and IFNGR2 with JAK2 (Fig. 6). Once the ligand binds, the 

receptor subunits undergo rearrangement and dimerization, followed by autophosphorylation 

and activation of JAKs. Interferon mediated signaling is initiated by the activated JAKs, which 
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activate not only the classical JAK-STAT signaling pathway, but also regulate several other 

downstream cascades (Platanias, 2005). IFN-γ plays a key role in inflammation, host defense 

against intracellular pathogens, Th1 cell responses, and tumor surveillance (Hu and Ivashkiv, 

2009). Considering the multi-faceted role of IFNs on target cells and tissues, this diversity in 

signaling is not surprising. Expression of the IRF1 gene is strongly induced by IFNγ (Der et al., 

1998).  

 

1.10 Interferon Regulatory Factors (IRFs) 

The number of known mammalian IRF family members has grown to 9 members since 

the first report of IRF1 in 1988: IRF1-9 (Fujita et al., 1988; Honda and Taniguchi, 2006a).  All 

IRF members have a well-conserved DNA binding domain (DBD) of approximately 120 amino 

acids located in the amino terminus. Forming a helix-turn-helix motif, this region recognizes a 

consensus DNA sequence termed the IRF-E [consensus sequence: A(G)NGAAANNGAAACT], 

Figure 6. IFN receptors and 
activation of classical JAK-STAT 
pathways by type II IFNs 
(Platanias, 2005). 
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which is almost identical to the interferon-stimulated response element [ISRE; consensus 

sequence: G(A)AAAG/C
T/CGAAAG/C

T/C] (Honda and Taniguchi, 2006a; Taniguchi et al., 2001). 

1.10.1 IRF1 

IRF1 was the first IRF family member that was discovered (Miyamoto et al., 1988). IRF1 

mRNA is expressed in a variety of cell types and it is dramatically upregulated upon viral 

infection or IFN stimulation (Harada et al., 1989; Miyamoto et al., 1988). Several cDNA 

transfection experiments have revealed that IRF1 can activate IFNα/β promoters, albeit at low 

efficiency (Taniguchi et al., 2001). It has a short half-life of approximately 30 minutes (Watanabe 

et al., 1991), and is expressed at low levels in unstimulated cells, but can be induced by many 

cytokines such as IFNs (-α, -β, -γ), TGFα, IL-1, IL-6 and leukocyte inhibitory factor (LIF), and by 

viral infection. IFNγ is the strongest known inducer of IRF1 expression, while certain 

combinations of cytokines, such as IFNγ and TNFα, induce even higher expression of IRF1 

mRNA (Ohmori and Hamilton, 1997). On the other hand, cytokines such as IL-4 have been 

reported to inhibit IFNγ-induced IRF1 expression (Coccia et al., 2000). Key promoter elements 

in the IRF1 promoter include GAS and NF-κB binding sites, where activated STAT1 and NF-κB 

bind, respectively, and induce transcription (Kroger et al., 2002). Interestingly, IRF1 can activate 

the IRF2 promoter and upregulate IRF2, which inhibits the transcription of IRF1-activated 

genes. IRF2 is thought to act as a negative feedback mechanism to limit IRF1 activity.  

1.10.2 Activities of IRF1 

The most crucial activity of IRF1 is its ability to promote transcription of specific 

promoters. It is constitutively localized in the nucleus, as the transcription factor contains two 

nuclear localization signals (NLS) 120RKERKSK and 132KSKTKRK (Fig. 7). Two activator 

fragments function in an additive manner and are located between amino acids 185 and 256. 

The N-terminal 60 amino acids contain a repression domain that strongly inhibits its 

transcriptional activity (Kroger et al., 2002). IRF1 is regulated by different means, but primarily, it 
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is regulated at the transcriptional level. Due to its short half-life of 30 minutes, it is predicted that 

IRF1 mRNA levels correlate with IRF1 protein levels (Watanabe et al., 1991). A multifunctional 

domain 1 (Mf1) exists inside the enhancer domain, and it seems to be required for recruitment 

of coactivators (Dornan et al., 2004), maximal IRF1-mediated growth suppression (C-terminal 

repression domain) (Eckert et al., 2006), and plays a key role in determining the rate of IRF1 

degradation (Pion et al., 2009). 

 

Figure 7.  IRF1 domain organization. The five tryptophan (W) repeats in the DBD 
are common to all IRFs. N-terminal Repression domain functions to repress the 
transcriptional activity of IRF1, while the C-terminal Repression domain is required 
for target gene and growth repression. Mf1, multifunctional domain 1; NLS, nuclear 
localization signal (Narayan et al., 2009). 

1.10.3 IRF1-Induced genes 

Target gene  Role Reference  

IP-10 (CXCL10)  Antiviral response, angiostasis 
(Buttmann et al., 

2007) 

Inducible nitric oxide synthase 

(iNOS) 
Antibacterial response (Kroger et al., 2002) 

PIGR 
IgA transport across mucous 

membranes 
(Blanch et al., 1999) 

Caspase 1 Apoptosis (Kroger et al., 2002) 
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IL-12/p35 Th1 type immune response 
(Kroger et al., 2002; 

Liu et al., 2003)  

Secreted leukocyte peptidase 

inhibitor (SLPI)  

Protects epithelial cells from serine 

proteases, broad antibiotic activity  
(Nguyen et al., 1999) 

Table 2. IRF1 target genes. Modified from (Kroger et al., 2002). 

1.10.4 Regulation of Immune Responses by IRF1 

IRF1 has been implicated in the development of immune cells, including dendritic, NK, 

and T cells (Tamura et al., 2008a). The generation of DC subsets is mainly regulated by IRF4 

and IRF8, and studies have shown that DC function is regulated by IRF8 (Tamura et al., 2008a). 

However, IRF1 also contributes in DC subset development. IRF1-/- mice show a predominance 

of plasmacytoid DCs and decrease in conventional DC numbers, especially in CD8α+ DCs 

(Gabriele et al., 2006). This study also indentified the increased levels of IL-10, TGF-β, and the 

tolerogenic enzyme indoleamine 2,3-dioxygenase (IDO), and the defect in IL-12p40 production 

in IRF1-/- DCs. As a result, IRF1-/- DCs fail to mature fully and stimulate proliferation of 

allogenic T cells, and induce IL-10-mediated suppression of CD4+CD25+ regulatory T cells. 

This suggests a novel role of IRF1 in regulating the tolerogenic features of DCs (Gabriele et al., 

2006). 

IRF1 plays a critical role in natural killer cell development. NK cells are dramatically 

reduced in IRF1-/- mice, resulting in the absence of NK cell activities such as cytotoxicity and 

IFNγ production. It seems that IRF1 expression is required in the stromal cells that constitute 

the microenvironment for NK cell development, as it is required for IL-15 induction, a cytokine 

essential for NK cell development (Ogasawara et al., 1998). Moreover, this IL-15 deficiency also 

causes impairment in the development of intestinal intraepithelial T cells (Ohteki et al., 1998). 
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The development of mature CD4- CD8+ T cells in the thymus and peripheral lymphoid 

organs is severely impaired in IRF1-/- mice (Matsuyama et al., 1993). This defect in thymocyte 

development is caused by intrinsic defects in T cell maturation, rather than environmental 

causes, as IRF1 controls both the negative and positive selection of CD8+ thymocytes 

(Penninger et al., 1997). In addition, IRF1 seems to mediate T cell receptor (TCR) signal 

transduction and may regulate the expression of genes required for lineage commitment and 

selection of CD8+ T cells (Penninger et al., 1997). One of those genes could be Bcl2, as 

introduction of a Bcl2 transgene into IRF1-/- restored CD8+ T cell development. This suggests 

that IRF1 may be required for survival signals to support CD8+ T cell development (Ohteki et 

al., 2001). 

IRF1 deficiency leads to the induction of only Th2-type immune responses (Lohoff et al., 

1997). This lack of Th1 differentiation of Cd4+ T cells is due to defects in multiple cell types. 

Firstly, IRF1-/- macrophages and dendritic cells are defective in IL-12, which is a cytokine 

essential for Th1 differentiation. Secondly, IRF1 activates the Il12rb1 (IL-12 receptor, β1) 

promoter, rendering IRF1-/- CD4+ cells hyporesponsive to IL-12. Thirdly, IRF1-/- mice lack NK 

cells, which produce IFNγ to stimulate macrophages into secreting IL-12  (Tamura et al., 

2008a).  

1.10.5 IRF1 and TLR signaling 

IRF1 has been reported to directly interact with the adaptor molecule MyD88 (Negishi et 

al., 2006). Although IFNγ can strongly induce IRF1 expression, full activation of IRF1 is 

achieved when it associates with the MyD88-TLR complex, as it undergoes post-translational 

modifications and migrates to the nucleus more efficiently than non-MyD88-associated IRF1.  

This TLR-MyD88 “licensing” of IRF1 is further emphasized by the observation that a subset of 

genes activated by the TLR-MyD88 pathway, such as inducible nitric oxide synthase (iNOS), 
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IFNβ, and IL-12p35, are impaired in IRF1-/- dendritic cells and macrophages stimulated with 

IFNγ and CpG (Negishi et al., 2006).  

This study is the first to investigate the details of the signaling mechanism of flagellin-

stimulated IRF1 expression and its role in regulating the immune response in the cornea. 

Flagellin/TLR5 activation of STAT1 has only recently been discovered, and may have a crucial 

role in modulating IRF1 expression. Suppression of IRF1 expression by flagellin-induced 

reprogramming could explain the benefit of flagellin in alleviating corneal inflammation. 

Stimulation with flagellin or suppression of IRF1 seems to result in a similar Th2-biased 

response. Therefore, this study is to delineate a pathway that is stimulated by flagellin and 

mediated by IRF1 that can alleviate/exacerbate the pathogenesis of bacterial keratitis. 

1.11 C-X-C Motif Chemokine 10 (CXCL10) 

The C-X-C motif chemokine 10 (CXCL10) also known as interferon γ-induced protein 10 

(IP-10), is a cytokine belonging to the CXC chemokine family. The CXCL10 protein is composed 

of 98 amino acids and has a molecular mass of 10,000 Daltons. CXCL10 exerts its biological 

effects by binding to CXCR3, a seven trans-membrane-spanning G protein-coupled receptor in 

a paracrine or autocrine fashion (Lo et al., 2010). CXCL10 is a pleiotropic molecule capable of 

exerting potent biological functions, including promoting the chemotactic activity of CXCR3+ 

cells, inducing apoptosis, regulating angiogenesis in infectious and inflammatory diseases and 

cancer (Liu et al., 2011a).  

1.12 CXCL10 in bacterial infection 

CXCL10 performs ‘‘homing’’ functions to chemoattract CXCR3-positive cells, including 

NK cells and activated T lymphocytes (CD4+ Th cells, CD8 (CD4+ Th cells, CD8+ Tc cells) 

toward inflamed and/or infected areas (Liu et al., 2011a). CXCL10 has been shown to play a 

role in Helicobacter pylori and Mycoplasma infections by recruiting inflammatory T cells into 
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the mucosal tissues (Kabashima et al., 2002). Elevation of CXCL10 levels appears to be an 

early host response to scrub typhus (Orientia tsutsugamushi) infection (DE FOST et al., 2005) 

and is associated with the severity of Legionnaire's disease and tuberculosis (TB). On the other 

hand, impaired CXCL10 production leads to increased susceptibility to Leginella pneumophila 

infection (Lettinga et al., 2003). In contrast, high levels of CXCL10 mediated protection against 

Leishmania amazonensis infection in mice, delayed lesion development and reduced parasite 

burden via IFNγ secretion (Vasquez and Soong, 2006). 

1.13 Activating Transcription Factor 3 (ATF3) 

ATF3 is a member of the larger AP-1 DNA binding protein group composed of the basic-

region leucine zipper (bZIP) transcription factors Jun (c-Jun, JunB, JunD), Fos (C-Fos, FosB, 

Fra-1, Fra-2), and ATF (ATF2, ATF3, B-ATF) (Shaulian and Karin, 2001). ATF3, a 21 kDa 

protein, can bind DNA at ATF/cAMP responsive element (ATF/CRE) consensus sequences 

(TGACGTCA) (70, 71). In general, ATF3 is considered a repressor of target genes, but when 

partnered with other transcription factors it can both activate and repress transcription (Hai and 

Curran, 1991). For example, ATF3/c-Jun and ATF3/JunD activate promoters with ATF/CRE 

binding sites, whereas the ATF3/JunB heterodimer activates genes with CRE-containing 

promoters but represses genes with AP-1-containing promoters (Hsu et al., 1992). Thus, ATF3’s 

role in transcription cannot be generalized. Evidence suggests that ATF3 may repress or 

activate the transcription of target genes depending on its dimerizing partner and the promoter 

context (Chen et al., 1994). 

 The ATF3 gene has four exons (A, B, C, E) spread over 15 kilobases and it is 

transcribed into two splice variants (Chen et al., 1994). The full-length transcript binds DNA, 

whereas the alternatively spliced variant, ATF3∆Zip (14 kDa), is truncated which prevents it 

from properly binding DNA at ATF/CRE consensus sites (Chen et al., 1994). Although the 

regulation of ATF3’s alternative splicing remains to be discovered, there are clues towards the 
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splice variants’ distinct function. Several studies have observed that truncated ATF3 acts as a 

transcriptional activator, possibly by sequestering transcriptional co-repressors (Chen et al., 

1994; Hashimoto et al., 2002; Pan et al., 2003). Another study found that the ATF3 splice 

variant represses NFκB-dependent transcription by displacing a positive cofactor (Hua et al., 

2006). There are several transcription factor binding sites located within the ATF3 gene 

promoter. ATF/CRE, AP-1 and NF-κB are inducible sites, which are known to be activated upon 

stress signals, and the Myc/Max, E2F, and p53 binding sites are involved in cell cycle regulation 

(Liang et al., 1996; Zhang et al., 2002). The expression of ATF3 mRNA is transient due to its 

ability to repress its own promoter (Wolfgang et al., 2000). There is a lack of evidence for 

posttranslational modifications of the ATF3 protein, although there are many potential 

modification sites that include several serine, threonine, tyrosine and lysine residues (Hai et al., 

2011). 

 
1.14 ATF3 in Immunity 

ATF3 induction by genotoxic agents can lead to the activation and repression of proteins 

involved in cell cycle regulation and apoptotic pathways. However, there is an emerging 

regulatory role for ATF3 in immunity and the inflammatory response. Gilchrist et al. were the first 

group to link ATF3 with the innate immune system (Gilchrist et al., 2006). A DNA microarray 

coupled with systems biology analysis revealed that ATF3 is induced upon TLR4 activation 

(Gilchrist et al., 2006). TLR4 activates the IL-6 and IL-12b cytokines through NF-κB and ATF3 

was found to repress the cytokine signal shortly after it was initiated (Gilchrist et al., 2006). The 

same study also found that ATF3 repressed 11 genes involved in macrophage signalling, thus 

highlighting ATF3’s role in a negative feedback loop of the innate immune system. This new 

function was validated by another study that found ATF3 to be induced by a wide range of TLRs 

(TLR-2/6, -3, -5, -7, -9) located on the cell surface membrane and in intracellular endosomes 

(Whitmore et al., 2007). ATF3 is induced in an asthma mouse model and atf3-null mice had 
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more severe asthmatic symptoms than wild type mice (Gilchrist et al., 2008). ATF3 appeared to 

elicit its inflammatory suppression by directly antagonizing the transcription of pro-inflammatory 

cytokines (IL-4, IL-5, IL-13) (Gilchrist et al., 2008)  and a chemokine (chemokine C-C motif 

ligand 4, CCL4) (Khuu et al., 2007). Interestingly, ATF3 appears to be repressed in patients with 

severe asthma compared to patients with mild disease (Roussel et al., 2011).  

As a cell cycle regulator, ATF3 can directly bind the p53 protein to prevent its 

ubiquitination and degradation, and thus augment its function and causing cell cycle arrest and 

apoptosis (Yan et al., 2005). Cyclin D1 is another regulator of cell proliferation that can be under 

the control of ATF3, which can directly target the cyclin D1 gene promoter, repressing its 

expression and subsequently leading to cell cycle arrest at the G1-S checkpoint (Lu et al., 

2006). Another ATF3 target involved in the cell cycle is inhibitor of differentiation (Id1), an 

oncogene involved in cell growth and invasion (Zigler et al., 2011). ATF3 has consistently been 

shown to repress the Id1 gene promoter in several in vitro models, supporting ATF3’s role as a 

transcriptional regulator of cell cycle control genes (Kang et al., 2003; Zigler et al., 2011). The 

ability of ATF3 to activate and repress transcription can help explain ATF3’s apoptotic roles 

upon cellular stress. 

1.15 Overview and significance  

Bacterial keratitis is considered as a serious medical condition that requires urgent 

medical attention due to potential vision reduction or loss in the affected eye. Factors that 

increase the chances of infection include extended wear of soft contact lenses; ocular surgical 

procedures; ocular disease and ocular injury. The infecting bacteria come from environmental 

sources, patients’ skin and nasopharyngeal flora, contact lens care solution or lens cases, 

topical drugs, irrigation solutions or ocular instruments (Fleiszig and Evans, 2002). In the United 

States, microbial keratitis is most frequently associated with complications related to contact 

lens usage, with an incidence rate of 25,000 to 30,000 cases per year (Khatri et al., 2002). 
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The integrated human immune response to infection has traditionally been divided into 2 

branches: innate and adaptive immunity. The protective ability of innate immunity of the corneal 

epithelium  is largely dependent on germ-line encoded pattern-recognition receptors (PRRs), 

such as Toll-like receptors (TLRs) that recognize pathogen-associated molecular patterns 

(PAMPs) (Kawai and Akira, 2011).  TLR-PAMP binding initiates the innate immune response, 

which includes the release of inflammatory mediators, antimicrobial effectors, and signals 

inducing adaptive immune responses (Nish and Medzhitov, 2011).   However, the corneal 

epithelial innate and inflammatory response to pathogens, if not properly controlled, can result in 

the development of bacterial keratitis. But multiple regulatory mechanisms exist in corneal 

epithelial cells to control the inflammatory response including the expression of negative 

regulators and the induction of hyporesponsiveness. 

Previous work from our lab has shown that application of purified flagellin, the ligand of 

TLR5, prior to microbial inoculation induces profound protection in the cornea against infectious 

pathogens (Gao et al., 2011a; Kumar et al., 2010a). Pre-exposure of corneal epithelial cells to 

flagellin dampens the expression of inflammatory cytokines and augments the induced 

expression of antimicrobial, anti-oxidative and/or cytoprotective genes in response to pathogens 

and other adverse challenges, a phenomenon now being renamed “TLR-mediated genomic 

reprogramming” (Biswas and Lopez-Collazo, 2009; Vartanian and Stenzel-Poore, 2010).  TLR5 

reprogramming has also been shown to induce protection against a variety of adverse 

challenges or diseases conditions such as stroke (Vartanian and Stenzel-Poore, 2010), infection 

(Kumar et al., 2008; Vijay-Kumar et al., 2008b), radiation (Burdelya et al., 2008; Jones et al., 

2011), and chemicals (Vijay-Kumar et al., 2008b). In addition, recent reports have also 

highlighted the increase in antibiotic resistant strains of bacteria, which fortifies the need to 

better understand the targeted genes and pathways involved in TLR5-induced cell 

reprogramming so that improved therapeutic strategies can be developed (Hazlett, 2004a). 
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As TLR-mediated expression of proinflammatory and cytoprotective genes are mostly 

controlled at the transcription level, it is of much interest to identify the transcription factors (TF) 

involved in TLR-induced reprogramming and mucosal surface protection. Hence, it is 

reasonable to postulate that in addition to NF-κB, other transcription factors (TFs), the effectors 

controlling gene expression, may also be involved in cell reprogramming.  In this regard, the 

goal of this dissertation is to test the following three hypotheses: 

1. TLR5-mediated human corneal epithelial cell reprogramming results in suppressed IRF1 

and CXCL10 expression, but enhanced ATF3 expression. 

2. TLR5-mediated mouse corneal protection requires the enhancement of IRF1 and CXCL10 

expression, which is caused by accelerated infiltration of IFNγ-secreting NK cells.  

3. ATF3 is essential for reducing pathogen-induced corneal inflammation, enhancing bacterial 

clearance and maintaining TLR5-mediated mouse corneal protection 
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CHAPTER 2 

CHARACTERIZATION OF EXPRESSION AND FUNCTION OF IRF1  IN HUMAN CORNEAL 

EPITHELIAL CELLS 

2.1 ABSTRACT 

We previously showed that pre-exposure of the cornea to TLR5 ligand flagellin induces 

profound mucosal innate protection against infections by modifying gene expression.  To 

understand the regulation at the transcriptional level, we used Superarray and identified 

Interferon Regulatory Factor (IRF) 1 and Activating Transcription Factor (ATF) 3 as the most 

drastically affected genes by flagellin pretreatment in P. aeruginosa challenged human corneal 

epithelial cells (CEC).  However, flagellin pretreatment had opposite effects on IRF1 (inhibition) 

and ATF3 (enhancement) gene expression in response to P. aeruginosa, and other IRFs were 

not affected. To find the functional target gene of IRF1, we knocked-down IRF1 using siRNA 

and identified the pleiotropic chemokine CXCL10, but not IL12-p35 or iNOS, as a specific target. 

The IRF1-CXCL10 axis is also strongly expressed in response to IFNγ stimulation, but flagellin 

pretreatment could not reprogram the IRF1-CXCL10 axis in response to IFNγ, indicating the 

different signaling mechanisms used by flagellin and IFNγ to induce IRF1-CXCL10 in hCECs. 

Together, our results indicate that flagellin profoundly reprograms the gene expression of IRF1 

and ATF3, and CXCL10 plays a key role in corneal innate immunity against microbial infection. 
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2.2 INTRODUCTION 

The ocular surface, like other mucosal surfaces including the respiratory (Bals and 

Hiemstra, 2004), gastrointestinal (Santaolalla et al., 2011), and urogenital tracts (Song and 

Abraham, 2008), is covered by epithelial cells (ECs) that form a physiological barrier.  These 

ECs also possess the ability to sense and initiate the host immune response, which is largely 

achieved through germ-line encoded pattern-recognition receptors (PRRs) (Kumar and Yu, 

2006; Ueta and Kinoshita, 2010; Yu and Hazlett, 2006).  Toll-like receptors (TLRs) are well-

known PRRs that recognize pathogen-associated molecular patterns (PAMPs) to initiate the 

innate immune response, which includes production of inflammatory mediators, antimicrobial 

effectors, and signals promoting the adaptive immune response (Nish and Medzhitov, 2011).  

However, the epithelial innate and inflammatory response to pathogens caused by TLRs, if not 

properly controlled, can also cause tissue damage, resulting in the development of human 

disease such as corneal scarring, airway asthma, or allergic rhinitis.  Multiple regulatory 

mechanisms exist in epithelial cells to control the inflammatory response including the 

expression of negative regulators and the induction of hyporesponsiveness, a phenomenon 

similar to endotoxin (TLR4) tolerance (West and Heagy, 2002). Pre-exposure of mucosal 

surfaces or cultured cells to TLR ligands has resulted in suppression of inflammatory cytokine 

release yet enhanced tissue resistance to infection and other adverse environmental challenges 

– a phenomenon called “reprogramming” (Fan and Cook, 2004; Nahid et al., 2011b). Cell 

reprogramming induced by TLR5/flagellin interaction has been shown to induce protection 

against a variety of adverse challenges or diseases conditions such as stroke (Vartanian and 

Stenzel-Poore, 2010), infection (Gao et al., 2011a; Kumar et al., 2008; Vijay-Kumar et al., 

2008b), radiation (Burdelya et al., 2008; Jones et al., 2011), and chemicals (Vijay-Kumar et al., 

2008b). 
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Previous studies from our lab have shown that TLR5 activation by flagellin in primary 

human corneal epithelial cells (HCECs) induces “cell reprogramming” that has greatly reduced 

proinflammatory cytokine production. This is mainly due to impaired activation of NF-κB and AP-

1 in flagellin-reprogrammed cells (Kumar et al., 2008; Kumar et al., 2007). However, the 

underlying mechanisms for the expression of antimicrobial effectors, such as hBD2 and LL-37, 

and other protective genes remain elusive.  

Hence, it is reasonable to postulate that in addition to NF-κB, other transcription factors 

(TFs), the effectors controlling gene expression, may also be involved in TLR ligand-mediated 

cell reprogramming.  Identification of these factors is of great interest as they may mediate the 

expression of a subgroup of genes, and serve as a more specific target for controlling TLR-

triggered inflammation and/or accelerating the resolution of inflammation. Moreover, it may lead 

to the development of more advanced therapeutic molecules to treat bacterial keratitis and other 

infectious diseases. As TLR-mediated expression of proinflammatory and cytoprotective genes 

are mostly controlled at the transcription level, it is of interest to identify the TFs involved in TLR-

induced reprogramming and mucosal surface protection. 

In this study, we used a real time PCR array to identify TFs with differential expression 

profiles in HCECs challenged with bacteria with or without flagellin pretreatment.  We identified 

IRF1 as one such TF and demonstrated that CXCL10 expression is regulated by in part by IRF1 

in response to flagellin and IFNγ stimulation, albeit by different pathways in HCECs. 

2.3  MATERIALS AND METHODS 

Human corneal epithelial cell culture 

Primary HCECs were isolated from human donor corneas obtained from the Midwest 

Eye Bank. The epithelial sheet was separated from the underlying stroma after overnight 

Dispase treatment. The dissected epithelial sheet was trypsinized, and the epithelial cells were 
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collected by centrifugation (500g, 5 minutes). HCECs were cultured in keratinocyte growth 

medium (KBM supplemented with growth factors; BioWhittaker) in T25 flasks coated with 

fibronectin-collagen (FNC) and use between passage 3 and 5. 

Reagents and antibodies 

Anti-ATF3, anti-IRF1 and anti-hBD2 antibodies were purchased from Santa Cruz 

Biotech (Santa Cruz, CA). Anti-β-actin and anti-CXCL10 antibodies were purchased from 

Sigma (St. Louis, MO) and Abcam (Cambridge, MA), respectively. Anti-LL-37 antibody was 

purchased from Panatechs (Tubingen, Germany). All other primary antibodies were purchased 

from Cell Signaling Technology (Danvers, MA). Horseradish peroxidase (HRP)-conjugated 

secondary antibodies were from Bio-Rad (Hercules, CA). Human IRF1 siRNA and negative 

control siRNA was purchased from Dharmacon (Chicago, IL). Defined keratinocyte serum-free 

medium (DK-SFM), reduced serum media (Opti-MEM), transfection reagent (Lipofectamine 

2000), and reagent (TRIzol) were purchased from Invitrogen (Carlsbad, CA). Keratinocyte 

basal medium (KBM) was purchased from BioWhittaker (Walkersville, MD).  

Bacterial strains and flagellin 

Flagellin was prepared from PAO1 using a previously described method (Zhang et al., 

2003b). For direct bacterial challenge of HCECs, P. aeruginosa were grown in tryptic soy broth 

(Sigma-Aldrich) at 37°C until absorbance at 600 nm reached O.D. 0.5. The bacterial culture was 

centrifuged at 6000 × g for 10 min. Bacteria were washed in PBS and resuspended in KBM 

(PAO1) or PBS (PAO1 or ATCC 19660) and then used to challenge HCECs at a ratio of 1:50 

(cell to bacteria) or to infect mouse corneas at 105 for PAO1 and 104 cfu for ATCC18660, 

respectively. 

RNA isolation and RT-PCR 
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Total RNA was isolated from HCECs using the TRIzol solution (Invitrogen, Carlsbad, 

CA) according to the manufacturer’s instructions. 1 µg of total RNA was reverse-transcribed with 

a first-strand synthesis system for RT-PCR (SuperScript; Invitrogen). cDNA was amplified by 

PCR using primers for human IRF1, CXCL10,  BD2,  IL-8,  and GAPDH (Table 3);. The PCR 

products and internal control GAPDH were subjected to electrophoresis on 1.5% agarose gels 

containing ethidium bromide. Stained gels were captured using a digital camera and band 

intensity was quantified using 1D Image Analysis Software (EDAS 290 system; Eastman Kodak, 

Rochester, NY).  

Transcription factor PCR array 

Total RNA was isolated using the protocol below. First strand DNA was created using 

RT2 First Strand kit along with the protocol and cycling times as recommended by the 

manufacturer (SABiosciences, Frederick, MD). Two-stage real-time reverse transcriptase PCR 

of Toll-like Receptor-related transcription factors was performed on the RT2 Profiler PCR Array  

(SABiosciences, Catalogue no. PAHS-018). The PCR was performed on an ABI 7000 (Applied 

Biosystems). The cycle threshold (CT) was determined for each sample and normalized to the 

average CT of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Comparative CT method 

was used to calculate relative gene expression. Data are represented as fold change relative to 

control. All solutions, including the SYBR Green reverse transcriptase PCR mix, were 

purchased from SABiosciences Corporation. The data was analyzed using online analysis 

software provided by the manufacturer. Briefly, the PCR Array Pathway Number is entered, 

followed by uploading the MS Excel file containing the PCR data. Housekeeping genes on the 

PCR array were used for data normalization, whereas HCECs without any treatment were used 

as the reference for infected with PAO1 and for flagellin pretreated and infected with the same 

strain. The "Fold Change" (increase as positive and decrease as negative) and "p-value" (only 

<0.05 were chosen) were used by the software for subsequent graphical presentation.  
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Western blot analysis 

HCECs challenged with either flagellin or bacteria were lysed with 

radioimmunoprecipitation assay (RIPA) buffer (150 mm NaCl, 100 mm Tris-HCl [pH 7.5], 1% 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1% Triton X-100, 50 mm NaF, 100 mm 

sodium pyrophosphate, and 3.5 mm sodium orthovanadate). A protease inhibitor cocktail 

(aprotinin, pepstatin A, leupeptin, and antipain, 1 mg/mL each) and 0.1 M phenylmethylsulfonyl 

fluoride were added to the RIPA buffer (1:1000 dilution) before use. The protein concentration in 

cell lysates was determined with the bicinchoninic acid detection assay (MicroBCA; Pierce). 

Proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-

PAGE) in Tris/glycine/SDS buffer (25 mM Tris, 250 mM glycine, and 0.1% SDS) and 

electroblotted onto nitrocellulose membranes (0.45-µm pores; Bio-Rad, Hercules, CA). After 

blocking for 1 hour in Tris-buffered saline/Tween (TBST; 20 mM Tris-HCl, 150 mM NaCl, and 

0.5% Tween) containing 5% nonfat milk, the blots were probed with primary antibodies overnight 

at 4°C. The membranes  were washed with 0.05% (vol/vol) Tween 20 in TBS (pH 7.6) and 

incubated with a 1:2000 dilution of horseradish peroxidase-conjugated secondary antibodies 

(Bio-Rad) for 60 minutes at room temperature. Protein bands were visualized by 

chemiluminescence (Supersignal reagents; Pierce) using the Kodak Image Station 4000R Pro. 

ELISA measurement of cytokines 

Secretion IL-8 and TNFα from HCECs was determined by ELISA. HCECs were plated at 

1 x 106 cells/well in six-well plates. After growth factor starvation, the cells were either left 

untreated or pretreated with flagellin followed by challenge with a higher dose of flagellin or live 

bacteria (~MOI 50). At the end of the incubation period, the media were harvested for 

measurement of cytokines and ELISA was performed according to the manufacturer’s 

instructions (R&D Systems, Minneapolis, MN). The amount of cytokines in cultured media was 

expressed as nanogram per milligram of cell lysate. All values are expressed as the mean ± 
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SEM. Statistical analysis was performed with an unpaired, two-tailed Student t test, and P < 

0.05 was considered statistically significant. 

Slot blot determination of CXCL10 and LL-37 

Accumulation of human CXCL10 in the culture media was detected by slot blot (Kumar 

et al., 2006). Briefly, 150 µl supernatant was applied to a nitrocellulose membrane (0.2 µm; Bio-

Rad) by vacuum using a slot-blot apparatus (Bio-Rad). The membrane was fixed by incubating 

with 10% formalin for 1 hour at room temperature, followed by blocking in Tris-buffered saline 

(TBS) containing 5% nonfat powdered milk for 1 h at room temperature. The membrane was 

then incubated overnight at 4°C with rabbit anti-human C XCL10 antibody diluted 1:500 in TBS 

containing 5% nonfat powdered milk, and 0.05% Tween-20. After washing, the membrane was 

incubated for 1 h at room temperature with goat anti-rabbit IgG conjugated to HRP diluted 

1:2000 with 5% nonfat powdered milk. Immunoreactivity was visualized by chemiluminescence 

(Supersignal reagents; Pierce) using the Kodak Image Station 4000R Pro. 

Statistical analysis 

An unpaired, two-tailed Student t test was used to determine statistical significance for 

data from bacterial count, cytokine ELISA and MPO assay. Mean differences were considered 

significant at a P value of <0.05. Experiments were repeated at least twice to ensure 

reproducibility. 

2.4 RESULTS 

Flagellin Pretreatment Suppresses PAO1-induced IRF1, but Enhances ATF3 Expression 

in HCECs. 

 The activation of NF-κB in response to bacterial and TLR challenges occurs at both 

transcriptional and post-transcriptional levels, whereas other transcription factors (TFs) are 

regulated primarily at the transcriptional level.  To determine the TFs involved in flagellin-
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induced cell reprogramming and protection against microbial infection, we used the transcription 

factor RT2 Profiler PCR Array to compare the expression profiles of TFs in HCECs in response 

to PAO1 (multiplicity of infection, MOI, 50 bacteria per cell) with or without flagellin pretreatment, 

50 ng/ml for 24 h (Fig. 8A).  Compared to the control, PAO1 challenge of HCECs resulted in 

greatly elevated expression of IRF1 (29.1 fold) and ATF3 (42 fold).  Strikingly, flagellin 

pretreatment further enhanced the expression of ATF3 (61.5 fold) while suppressing IRF1 

expression by -2.93 fold compared to control, giving an 85.2 fold decrease for IRF1 mRNA in 

PAO1 challenged HCECs.   

  To further confirm the expression pattern of IRF1 at the protein level, Western blotting of 

HCEC lysates, ELISA for IL-8, and dot blot for LL-37 detection in culture media were performed 

(Fig. 8B-D).  As we have demonstrated previously (Kumar et al., 2007), flagellin-pretreatment 

(50 ng/ml for 24 h) by itself had minimal effects on HCECs, including the expression of IRF1 and 

its target gene CXCL10 (data not shown).  PAO1 (50 MOI)-stimulated production of IL-8 (Fig. 

8B) was blocked while LL-37 levels increased (Fig. 8C) in HCECs pretreated with flagellin, 

indicating flagellin-induced cell reprogramming.  Consistent with the PCR array data, PAO1 

challenge induced an abundant expression of IRF1, and flagellin pretreatment dampened 

PAO1-induced IRF1 expression (Fig. 8D).  Thus, IRF1 is differentially expressed in HCECs in 

response to bacterial challenge in the presence or absence of flagellin pretreatment, and this 

disparity of expression suggests that IRF1 is a good candidate to study flagellin-induced cell 

reprogramming.  Given its distinction as an important regulator of inflammation and immunity 

(Koetzler et al., 2009; Stirnweiss et al., 2010; Zaheer and Proud, 2010), we focused on IRF1 in 

subsequent experiments in this chapter and the next. 

IRF1 is the only IRF upregulated by TLR5 activation in HCECs 

The 9 IRFs identified have been reported to play significant roles in innate immunity and 

PRR-mediated induction of cytokines (Fujita et al., 1988; Honda and Taniguchi, 2006a). It has 
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been shown that IRF5, which associates with MyD88, an adaptor of most TLR, is a critical 

regulator of the induction of proinflammatory cytokine genes (Takaoka et al., 2005). It was also 

reported that IRF4 and IRF8 participate in TLR-mediated signaling in dendritic cells (DC) 

(Negishi et al., 2005). In addition, recent studies have reported the up-regulation of IRF3 and 7 

induced by TLR3 and 4 through the TRIF-mediated pathway, and of IRF5, 7 and 1 by 

intracellular TLRs (7, 8, and 9), the latter only in myeloid dendritic cells (Battistini, 2009; 

Savitsky et al., 2010a). Thus, many of the IRF family members are essential regulators in TLR-

mediated signaling.  Therefore, we analyzed the mRNA expression levels of other IRF family 

members (IRF1-9) in HCECs under the same treatments using RT-PCR (Fig. 9) to verify 

whether other IRFs are subjected to reprogramming. All IRFs, except IRF4 and IRF8, were 

detectable, but did not display any alterations in RNA expression after stimulation with flagellin 

or infection with live PAO1 bacteria for 4h. IRF2 is known as a natural antagonist of IRF1 

expression (Choo et al., 2006) but was not altered at 4h post-stimulation. Hence, all observed 

effects related to IFNs are likely the results of IRF1 upregulation in HCECS.  

IRF1 targets the expression of CXCL10 in HCECs 

 CXCL10 is a major target gene of IRF1 (O'Neill and Bowie, 2007; Shultz et al., 2009). 

We have shown that the expression of CXCL10 in CECs is very sensitive to the environmental 

challenges including wounding (Gao et al., 2011b) and infection (Fig. 8). To determine if TLR5-

induced CXCL10 expression is regulated by IRF1, siRNA knockdown of IRF1 was performed 

(Fig. 10). Here, we used a higher dose of flagellin (250ng/ml), to mimic the inflammatory 

response induced by bacterial challenge (Kumar et al., 2007) to stimulate CXCL10 expression.  

At the mRNA level, IRF1 siRNA treatment reduced flagellin-induced IRF1 expression (Fig. 10A). 

Consistent with IRF1 downregulation, CXCL10 expression was affected, while, as expected, IL-

8 and hBD2 were not.  At the protein level (Fig. 10B), IRF1 was not detected in the control but 

induced by 250 ng/ml flagellin as stimulus for 4 h.  This induced elevation of IRF1 was 
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dampened by IRF1-specific, but not by non-specific siRNA. Equal quantity of culture media, 

normalized with protein concentration, from the same samples shown in Panel B were subjected 

to Slot Blot for CXCL10 secretion with hBD2 as the positive control (Fig. 10C).   The 

accumulation of CXCL10, but not hBD2, in culture media was affected by IRF1 siRNA. Taken 

together, figure 10 shows a strong correlation between IRF1 levels and CXCL10 expression and 

production in cultured HCECs. 

Flagellin-induced HCEC reprogramming cannot suppress IFNγ-induced IRF1 and CXCL10 

expression 

Flagellin caused reprogramming of HCECs to suppress PAO1-induced IRF1 expression. 

However, we wanted to find if flagellin can reprogram the expression of IFNγ-stimulated IRF1 

and CXCL10 in HCECs, as IFNγ is a powerful stimulator of IRF1 and CXCL10 expression 

(Ohmori and Hamilton, 1997). We pretreated primary HCECs with or without flagellin for 24h 

and then stimulated with IFNγ (10ng/ml) for 4h, after which the cells and culture media were 

collected and subjected to Western blot for IRF1 detection and Slot Blot for CXCL10 detection 

(Fig.11A & B). IFNγ 10 ng/ml produced a robust expression of IRF1 and CXCL10 (lane 3), and 

flagellin pretreatment did not cause noticeable reduction in IFNγ-induced IRF1 and CXCL10 

expression (lane 3 vs lane 4). A high dose of flagellin (250ng/ml) was used as control for IRF1 

and CXCL10 expression (lane 2). These results suggest that TLR5 and IFNγR utilize different 

signaling pathways to regulate IRF1 expression, and that suppression of IRF1 expression by 

TLR5/flagellin-induced reprogramming does not extend to IFNγ-induced IRF1 expression.  

2.5 DISCUSSION 

Previous studies from our lab have shown that flagellin pretreatment has profound 

effects on mucosal innate immunity in mouse cornea and lung (Gao et al., 2011a; Kumar et al., 

2010a; Yu et al., 2010). To understand the underlying mechanisms of flagellin-induced 
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reprogramming we started our study in cultured primary HCECs by screening for transcription 

factors (TF) differentially expressed in PAO1-infected primary HCECs with or without flagellin 

pretreatment. This revealed that IRF1 expression was greatly increased in response to bacterial 

challenge but pre-exposure of cells to a low dosage of flagellin for 24h prior to PAO1 challenge 

caused a dramatic decrease in IRF1 expression.  IRF1 is one of the members of the IRF family 

of TFs consisting of nine members: IRF1-9 (Colonna, 2007; Honda and Taniguchi, 2006b; 

Savitsky et al., 2010b).  IRFs were first characterized as IFN-inducible TFs and recent studies 

have revealed their involvement in the regulation of gene expression in responses triggered by 

TLRs. Our study is the first to show elevated expression of IRF1 in response to TLR5 

stimulation by flagellin or Gram-negative bacterial challenge in non-professional immune cells.  

Other IRFs have been reported to be expressed in response to other TLRs, such as IRF3 and 7 

by TLR3 and 4 (Battistini, 2009; Savitsky et al., 2010a) and IRF5 and 7 by intracellular TLRs (7, 

8, and 9) (Battistini 2009). However, we did not detect alterations in gene expression of other 

IRFs, indicating the specificity of the TLR5-induced IRF1 expression in CECs. In accordance 

with reports that IRF4 and IRF8 are only expressed in immune cells (Tamura et al., 2008a), we 

could not detect them in HCECs. 

TFs function as gene expression regulators, and in order to elucidate the function of 

IRF1 in HCECs, we screened for effector target genes of IRF1. Down regulation of IRF1 by 

siRNA in HCECs reduced the expression and secretion of CXCL10, a major targeted gene of 

IRF1. However, other reported target genes such as iNOS or IL-12p35 did not display reduction 

at the RNA level, indicating the specificity of CXCL10 as a target gene of IRF1 in corneal 

epithelial cells. CXCL10 is a chemokine for innate immune cells such as NK cells. In addition to 

being a chemokine, CXCL10 has also been shown to possess antimicrobial activities (Cole et 

al., 2001a; Egesten et al., 2007; Gotsch et al., 2007; Muller et al., 2010; Strieter et al., 1995; 

Yang et al., 2003).  Indeed, we recently observed CXCL10 possessing bactericidal and 
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fungicidal activities in vitro and in vivo (Liu, Gao and Yu, Submitted).  In the cornea, CXCL10 is 

among the earliest and most highly expressed chemokines during HSV-1 infection and plays a 

pivotal role in the coordinated immune response to HSV-1 (Carr et al., 2003; Wuest and Carr, 

2008).   

In summary, our results suggest that TLR5/flagellin prestimulation reprograms the 

expression of IRF1 in HCECs, by suppressing its expression in response to P. aeruginosa 

challenge, and exerts its function by regulating the expression CXCL10, a pleiotropic molecule 

with anti-microbial and angiostatic function. Future studies to delineate the function of the IRF1-

CXCL10 axis in the animal model of flagellin-induced corneal protection against bacterial 

keratitis is warranted.  
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Figure 8. Reprogramming of transcription factor exp ression caused by flagellin 
pretreatment in primary HCECs. Normal or flagellin-pretreated (50 ng/ml, 24 h) cells were 
challenged with live PAO1 (1:50 MOI) for 4 h and transcription factor RNA expression 
alterations were quantified by comparing RNA fold changes of PAO1-infected normal cells vs 
PAO1-infected flagellin-pretreated cells using the real-time RT2 Profiler PCR Array (A). The 
cycle threshold (CT) was determined for each sample and normalized to the average CT of 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are represented as fold change 
relative to control.  For confirmation of PCR array results, cells were cultured and challenged 
under the same conditions and lysed and subjected to Western blotting analyses with ATF3, 
IRF1 and β-actin antibodies (D). Cell culture media was collected 4 h post bacterial challenge 
for the analyses of IL-8 by ELISA (B) and LL-37 using slot-blot (C). P values were generated 
using unpaired Student’s t test (** P<0.01). The figure is a representative of four independent 
experiments. 
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Figure 9.  Expression of IRFs in HCECs. RT-PCR analysis of the IRF family gene expression. 
Normal or flagellin-pretreated (50 ng/ml, 24 h) cells were challenged with live PAO1 (1:50 MOI) 
or a high dose of flagellin (FLAG: 250 ng/ml) for 4 h and transcription factor RNA expression 
alterations were quantified using RT-PCR. The figure is a representative of two independent 
experiments. 
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Figure 10. Requirement of IRF1 for flagellin-induced CXCL10 expression and production. 
HCECs were transfected with IRF1 siRNA with transfection vehicle alone (V) and scrambled 
siRNA (M) as the controls. At 48 h post-transfection, cells were challenged with 250 ng/ml 
flagellin and then lysed at 4 h for semi-quantitaive RT-PCR analysis (A) or Western blotting of 
IRF1 and actin (B). The culture media collected was used for dot blot analysis of CXCL10 and 
hBD2 production (B).   The figure is a representative of three independent experiments. 
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Figure 11. Flagellin pretreatment cannot suppress IFNγ-induced IRF1 and CXCL10 expression. 
Western blot of IRF1 and actin (A) and slot blot of CXCL10 (B). Pre-Flag, 50ng/ml flagellin-
pretreatment for 24 hrs; FLAG, 250ng/ml flagellin rechallenged; IFNγ, 10ng/ml. Figure is a 
representation of three independent experiments. 
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Table 3. Human primer sequences used for PCR  

Gene Primer Sequence (5’→3’) 
Product 
size (bp) 

IRF1 
Forward 

Reverse 

TTCCCTCTTCCACTCGGAGT 

GATATCTGGCAGGGAGTTCA 
379 

IRF2 
Forward 

Reverse 

GATGCATGCGGCTAGACATGGGTG 

GGTAGAGCTCGCTCATGCTGACCGG 
548 

IRF3 
Forward 

Reverse 

AATCCCACTCCCTTCCCAAACC 

-CAAACACGCCTCCTTCCTTGTC 
430 

IRF4 
Forward 

Reverse 

TCCCCACAGAGCCAAGCATAAG 

TAGCCCCTCAGGAAATGTCCACTG 
586 

IRF5 
Forward 

Reverse 

AGACCAAGCTTTTCAGCCTGG 

GCCTTGTTATTGCATGCCAGC 
407 

IRF6 
Forward 

Reverse 

CAAAACTGAACCCCTGGAGATG 

GCCATTCTTCCCCAAAGCATAAG 
560 

IRF7 
Forward 

Reverse 

TCGTGATGCTGCGGGATAAC 

TGTGTGTGTGCCAAGAATGG 
175 

IRF8 
Forward 

Reverse 

CAGTGGCTGATCGAGCAGATTGA 

ATTCACGCAGCCAGCAGTTGCCA 
360 

IRF9 
Forward 

Reverse 

CTGCTCACCTTCATCTACAACGG 

ATTCAGTGTTACCTGGAACTTCGG 
390 

CXCL10 Forward GTACCTCTCTCTAGAACCGTACG 229 
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Reverse GAGATCTTTTAGACATTTCC 

IL-12p35 
Forward 

Reverse 

TTCACCACTCCCAAAACCTGC 

GAGGCCAGGCAACTCCCATTAG 
226 

iNOS 
Forward 

Reverse 

CAACTCTATATTGCTGGAACATGGA 

TGGAAGCCTGTGATACTTTCTGTACT 
125 

IL-8 
Forward 

Reverse 

GCTTCTGCATTTGAGTTTGCTAGCT 

TACAGACATTCACAGCCACC 
294 

BD2 
Forward 

Reverse 

GAGAAACAGGATGGCTGAAGG 

TGAGGATGGTGTAAGCGATGG 
291 
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CHAPTER 3 

INTERFERON REGULATORY FACTOR-1 IN FLAGELLIN-INDUCED  REPROGRAMMING: 

POTENTIAL PROTECTIVE ROLE OF ITS TARGET GENE CXCL10  IN CORNEA INNATE 

DEFENSE AGAINST PSEUDOMONAS AERUGINOSA INFECTION 

3.1 ABSTRACT 

Having shown Interferon Regulatory Factor (IRF) 1 as the most drastically affected gene 

by flagellin pretreatment in P. aeruginosa challenged human corneal epithelial cells (CEC) and 

CXCL10 as the target gene of IRF1, next we sought understand the role of IRF1 and CXCL10 in 

mucosal innate protection against infections in vivo. Flagellin augmented the P. aeruginosa-

induced expression of CXCL10 in CECs in WT, but not in IRF1-/- mice at 6 hpi. IRF1 deficiency 

markedly increased the severity of P. aeruginosa keratitis and significantly attenuated flagellin-

elicited protection compared to WT controls at 3 dpi. CXCL10 neutralization in the cornea of WT 

mice displayed similar pathogenesis to that of IRF1-/- mice.  To understand the regulation of 

CXCL10 expression in vivo, we used neutralizing antibodies to target IFNγ and its producer NK 

cells. The neutralization of IFNγ receptor or NK cells prevented flagellin-augmented IRF1 and 

CXCL10 expression and increased the susceptibility to P. aeruginosa infection in mouse 

corneas. Together, our results indicate that IRF1 plays a role in the corneal innate immune 

response by regulating CXCL10 expression and that IFNγ-producing NK cells induces epithelial 

expression of IRF1, thus significantly contributing to the protection of the cornea from P. 

aeruginosa infection.  
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3.2 INTRODUCTION 

Among the 10 identified human TLRs, TLR5 is unique as it recognizes a bacterial protein 

called flagellin and requires only MyD88 for signal transduction Using flagellin as a stimulus, we 

found that pre-stimulation of the cornea provided robust protection against microbial keratitis, 

including those caused by flagellin-bearing Pseudomonas (P.) aeruginosa or unrelated 

pathogens such as fungi (Gao et al., 2011a; Gao et al., 2010; Kumar et al., 2010a; Kumar et al., 

2008; Kumar et al., 2007).  Flagellin has also been reported to induce protection against lethal 

radiation and chemicals in mice and monkeys (Burdelya et al., 2008; Vijay-Kumar et al., 2008b), 

to restore antibiotic-impaired innate immune defenses (Kinnebrew et al., 2010), and to protect 

mice from acute Clostridium difficile colitis (Jarchum et al., 2011).  Moreover, the flagellin-TLR5 

axis, but not the Ipaf pathway (Miao et al., 2006; Miao et al., 2007), exhibits several distinctive 

properties: 1) more potent stimulation of mucosal ECs compared to immune cells such as 

dendritic cells and macrophages (Uematsu and Akira, 2009), 2) unique expression of anti-

inflammatory genes (such as IL-1Ra, but not IL-1β) (Carvalho et al., 2010; Vijay-Kumar et al., 

2008b), and 3) preservation of epithelial barrier function (Jarchum et al., 2011; Kinnebrew et al., 

2010). While flagellin or its derivatives have great potential as a prophylactic and/or therapeutic 

reagent, its clinical application faces many obstacles due to its potential ability to alter the cell’s 

response to other adverse challenges, its untested usability in repeated applications on the 

airway and cornea or through systematic injections, and the generation of antibodies in the host 

that neutralize its effects in vivo (Campodonico et al., 2010; Prince, 2006).  Hence, harnessing 

the flagellin-induced protective power requires much more insight into the underlying 

mechanisms of cell reprogramming.  

 In this chapter, we utilized animal model of P. aeruginosa keratitis to verify the 

expression of IRF1 and its target gene CXCL10, and elucidate its role in protective effects of 

flagellin-induced protection of the cornea. Our results suggest that the IRF1-CXCL10 axis plays 
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a role in flagellin-induced corneal protection by accelerating the recruitment or proliferation of 

IFNγ-secreting NK cells into the cornea.   

3.3 MATERIALS AND METHODS 

Reagents and antibodies 

Anti-human IRF1, and anti-BD2 antibodies were purchased from Santa Cruz Biotech 

(Santa Cruz, CA). Anti-β-actin and anti-mouse CXCL10 antibodies were purchased from Sigma 

(St. Louis, MO) and Peprotech (Rocky Hill, NJ), respectively.  Anti-NK1.1 was purchased from 

eBiosciences (San Diego, CA). Anti-IFNγR2 was purchased from R&D Systems (Minneapolis, 

MN). Horseradish peroxidase (HRP)-conjugated secondary antibodies were from Bio-Rad 

(Hercules, CA). FITC-conjugated secondary antibodies were from Jackson ImmunoResearch 

(West Grove, PA). Defined keratinocyte serum-free medium (DK-SFM), were purchased from 

Invitrogen (Carlsbad, CA). Keratinocyte basal medium (KBM) was purchased from BioWhittaker 

(Walkersville, MD).  

Animals 

Wild-type (WT) C57BL6 (B6) mice (8 weeks of age; 20–24 g weight) and IRF1-/-mouse 

breeding pairs were purchased from The Jackson Laboratory (Bar Harbor, ME). IRF1-/- 

mouse were bred in-house, and their pups were subjected to genotyping before use. All 

investigations conformed to the regulations of the ARVO Statement for the Use of Animals in 

Ophthalmic and Vision Research, the National Institutes of Health, and the guidelines of the 

Animal Investigation Committee of Wayne State University. 

Bacterial strains and flagellin 

Two strains of P. aeruginosa PAO1 and ATCC 19660, were used in the study.  ATCC 

19660, a toxic strain, can infect the B6 mouse corneas at 104 cfu per cornea and cause severe 

keratitis and corneal perforation at about day 5, while 108 cfu of PAO1 are required for mild 
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keratitis. To illustrate the profound protection induced by flagellin we have been using ATCC 

19660.  However, our interest is in the early innate immune response in the cornea, particularly 

the epithelium, which has been shown to play a key role in innate immunity and in shaping 

adaptive immunity as well.  ATCC 19660 usually causes epithelial cell death in vitro and 

epithelial sheet loss in vivo.  To that end, we had to use PAO1 with 10 fold increase in cfu (105) 

to challenge B6 mouse corneas and assess host responses at 6 h by isolate epithelial cells for 

PCR analysis or immunohistochemistry. Flagellin was prepared from PAO1 using a previously 

described method (Zhang et al., 2003b). P. aeruginosa were grown in tryptic soy broth (Sigma-

Aldrich) at 37°C until absorbance at 600 nm reached  O.D. 0.5. The bacterial culture was 

centrifuged at 6000 × g for 10 min. Bacteria were washed in PBS and resuspended in PBS and 

then used to infect mouse corneas at 105 for PAO1 and 104 cfu for ATCC19660, respectively. 

ELISA measurement of cytokines 

To measure mouse CXCL2 and CXCL10, corneal extracts were prepared by 

homogenization in 200µl phosphate-buffered saline (PBS) with a glass micro tissue grinder, 

followed by centrifugation at 14,000 × g for 10 min. Protein concentration of the corneal lysate 

was determined by Micro BCATM protein assay kit (Pierce) and equal amounts of protein was 

used to perform ELISA according to the manufacturer's instructions (R & D Systems). 

RNA isolation, RT-PCR and Real-time PCR 

Total RNA was isolated from mice corneal epithelia or whole cornea using RNeasy Mini 

Kit (Qiagen, Valencia, CA) according to each manufacturer’s instructions. 1 µg of total RNA was 

reverse-transcribed with a first-strand synthesis system for RT-PCR (SuperScript; Invitrogen). 

cDNA was amplified by PCR using primers for mouse IFNγ, IRF1, CXCL10, CXCL2, BD3,   and 

GAPDH (Table 1). The PCR products and internal control GAPDH were subjected to 

electrophoresis on 1.5% agarose gels containing ethidium bromide. Stained gels were captured 

using a digital camera and band intensity was quantified using 1D Image Analysis Software 
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(EDAS 290 system; Eastman Kodak, Rochester, NY). Real-time PCR was conducted using the 

Power SYBR Green PCR Master Mix (AB Applied Biosystems, Carlsbad, CA), based on 

expression of GAPDH, on the StepOnePlus Real-Time PCR System (AB Applied Biosystems, 

Carlsbad, CA). 

PMN infiltration assay 

Measurement of myeloperoxidase (MPO) activity was employed to determine PMN 

infiltration in the cornea as previously described.(Kumar et al., 2008) The corneas were excised 

from enucleated eyes at 5 dpi and homogenized in 1 ml of hexadecyltrimethylammonium 

bromide (HTAB) buffer (0.5% HTAB in 50 mM phosphate buffer, pH 6.0). The samples were 

then subjected to four freeze-thaw cycles, followed by centrifugation at 16,000 × g for 20 min. 

Each supernatant was mixed with 50 mM phosphate buffer (pH 6.0) containing 16.7 mg/ml O,O-

dianisidine hydrochloride and 0.0005% hydrogen peroxide at a 1:30 ratio to obtain a total 

volume of 3 ml. The change in absorbance at 460 nm was monitored continuously for 5 min. 

The results were expressed in units of MPO activity/cornea. 

Bacterial CFU determination in the cornea 

Corneas (n=5 to 7/group) from PA -infected mice were collected, and the numbers of 

viable bacteria were determined by plate count method. Individual corneas were homogenized 

in sterile PBS, and aliquots (100 µl) of serial dilutions were plated onto Pseudomonas isolation 

agar (BD biosciences) plates in triplicate. The plates were incubated overnight at 37°C and 

bacterial colonies were counted. The results are expressed as the mean number of cfu/cornea. 

Immunohistochemistry 

Mouse eyes were enucleated and embedded in Tissue-Tek (Miles Inc., Elkhart, IN) 

optimal cutting temperature (OCT) compound and frozen in liquid nitrogen. Sections (10-µm 

thick) were cut and mounted to poly-lysine-coated glass slides. After a 10-minute fixation in 4% 

paraformaldehyde, slides were blocked with 10 mmol/L sodium phosphate buffer containing 2% 
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BSA for 1 hour at room temperature. Sections were then incubated with primary antibody for 

CXCL10, 5 µg/mL. For fluorescence microscopy, the slides were incubated with anti-rabbit IgG 

conjugated with fluorescein isothiocyanate (Jackson ImmunoResearch Laboratories, West 

Grove, PA, 1:100), and then mounted with Vectorshield mounting medium containing DAPI 

mounting media. Controls were similarly treated, but the primary antibody was replaced with 

rabbit IgG.  

Statistical analysis 

An unpaired, two-tailed Student t test was used to determine statistical significance for 

data from bacterial count, cytokine ELISA, MPO assay, real-time PCR. Mean differences were 

considered significant at a P value of <0.05. Experiments were repeated at least twice to ensure 

reproducibility. 

3.4 RESULTS 

IRF1 Deficiency Dramatically Reduced Pseudomonas-induced CXCL10 Expression in B6 

Mouse Corneal Epithelium 

Having shown the dramatic effects of flagellin pretreatment on P. aeruginosa PAO1-

induced IRF1 expression in human CECs, we next investigated if flagellin pretreatment can also 

dampen IRF1 expression in vivo in mouse CECs in response to PAO1 at 6 hpi (Fig. 12).  

Previously we established an animal model demonstrating that pre-exposure of the mouse 

cornea to flagellin suppressed infection-induced inflammation and enhanced pathogen 

clearance, rendering it resistant to bacterial and fungal infection (Gao et al., 2011a; Kumar et 

al., 2010a). Surprisingly, unlike in vitro cultured human CECs, we observed augmented 

expression of IRF1 by flagellin pretreatment in PAO1 infected corneas (Fig. 12A).  To assess 

the consequences of altered expression of IRF1, we evaluated the expression of the IRF1 target 

gene CXCL10 in comparison with two known flagellin reprogrammed genes, CXCL2 (MIP-2, a 
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homolog of human IL-8) and mBD3 (a human homolog of inducible hBD2) in WT and IRF1 

knockout mice. The expression patterns of CXCL10 in these mice were consistent with IRF1 

expression except a faint band that can be detected in IRF1-/- mice by RT-PCR, suggesting 

additional pathways to induce CXCL10 expression in response to PAO1. Flagellin-augmented 

CXCL10 expression in PAO1-exposed WT, but not IRF1-/- mice CECs was verified with real 

time PCR showing 32 and 47 fold increases in CXCL10 mRNA levels in infected WT CECs 

without or with flagellin pretreatment, respectively. There was no significant increase of CXCL10 

in PAO1-infected corneas of IRF1-/- mice. As a control, the expression pattern of mBD3 was the 

same in WT and IRF1-/- mice (Fig. 12B).    

We next investigated CXCL10 expression and distribution in the corneas in response to 

flagellin pretreatment and PAO1 infection using immunohistochemistry with epifluorescence 

microscopy to show whole cornea and confocal microscopy to focus on epithelia (Fig. 13). 

Consistent with mRNA levels, no expression of CXCL10 was detected in uninfected corneas of 

WT and IRF1-/- mice (Fig. 13: A-C and J-L).  PAO1 infection at 6 h induced CXCL10 expression 

in WT (Fig. 13: D-F) but not in IRF1-/- (Fig. 13: M-O) mice.  Flagellin pretreatment greatly 

increased CXCL10 immunoreactivity in corneal epithelia of WT (Fig. 13: G-I with the insert i as 

the isotype control).  No CXCL10 staining was observed in epithelium of IRF1-/- mice (Fig. 13: 

P-R). Hence, IRF1 is required for PAO1-induced and flagellin-augmented CXCL10 expression 

in mouse CECs. 

Flagellin-induced Corneal Protection against Pseudomonas is Reduced in IRF1-/- Mice 

  To examine the role of IRF1 on P. aeruginosa keratitis, we used a well-accepted P. 

aeruginosa keratitis model using a toxic strain (ATCC 19660) which causes severe corneal 

keratitis and perforation, allowing better assessment of the protective effects of flagellin.   As we 

showed previously (Kumar et al., 2008), 104 cfu ATCC 19660/cornea caused severe 

inflammation in WT B6 mice with high bacterial burden and pretreatment with 500ng 
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flagellin/eye for 24 hrs resulted in total protection with no sign of inflammation and no viable 

bacteria at 3 dpi (Fig. 14).  The corneas of IRF1-/- mice at 3 dpi exhibited signs of perforation 

which usually occurs in WT B6 mice at 5 dpi or later, albeit the bacterial burden was comparable 

to B6 mice (Fig. 14A).  Flagellin pretreatment was able to protect the cornea of IRF1-/- mice 

from perforation with much reduced bacterial burden compared to the controls injected with PBS 

at 3 dpi (Fig. 14B). Compared to the WT, the protection was much reduced and incomplete. The 

severe keratitis observed in IRF1-/- mice appeared to be correlated to PMN infiltration while 

expression of CXCL2 was correlated to bacterial burden in these mice (Fig. 14C and 14D).  

Thus, IRF1-/- mice are susceptible to P. aeruginosa with dimished flagellin-induced protection.  

Neutralization of CXCL10 Activity Impedes the Protective Properties of Flagellin 

Pretreatment against PA Infection  

How might IRF1 influence corneal innate immunity and flagellin induced protection? As 

CXCL10 was a target gene of IRF1 and upregulated more apparently in protected corneas, we 

reasoned that it could play a role as an effector of IRF1 in bacterial keratitis. To test this 

hypothesis, we injected into the mouse subconjunctival space an anti-CXCL10 neutralizing 

antibody or isotype rabbit IgG 4 h prior to flagellin/PBS pretreatment, followed by P. aeruginosa 

infection.  At 3 dpi, we assayed viable bacterial count, MPO activity and CXCL2 expression in 

infected corneas (Fig. 15). CXCL10 neutralization did not significantly increase bacterial burden, 

PMN infiltration and CXCL2 expression in infected corneas at 3 dpi in PBS pretreated WT B6 

mice.  However, in flagellin-pretreated corneas CXCL10 neutralization resulted in visible 

infection and inflammation (Fig. 15A), significant increases in bacterial count (Fig. 15B), MPO 

activity (Fig. 15C) and CXCL2 expression (Fig. 15D) compared to anti-rabbit IgG-injected 

controls. However, compared to the control, PBS-pretreated corneas, flagellin-induced 

protection remained apparent. These results support the role of CXCL10 in mediating flagellin-

induced corneal protection in the mouse model of PA keratitis. 
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Flagellin-augmented CXCL10 Expression and protection involve IFNγ and NK cells in the 

corneas 

There was a major disparity between in vitro and in vivo results regarding IRF1 

expression in flagellin-pretreated CECs in response to P. aeruginosa: human CECs in vitro 

flagellin pretreatment dampened IRF1 expression, whereas in vivo infection-induced IRF1 

expression was further augmented.  This disparity could be due to human versus mouse CECs 

and/or to the pathogen used, PAO1 versus ATCC 19660.  We would argue that the disparity is 

primarily due to the response of other cells such as infiltrated innate immune cells that are 

lacking in the cell culture setting.  We hypothesized that IFNγ, the strongest inducer of IRF1 and 

CXCL10, secreted from infiltrating NK cells (Souza-Fonseca-Guimaraes et al., 2012), is the 

missing link in cultured human CECs. To test this hypothesis, we first blocked IFNγ function by 

injecting anti-IFNγR2 neutralizing antibodies (2.5µg per cornea) subconjunctivally 4h prior to 

flagellin pretreatment, followed by ATCC 19660 inoculation. As shown in Figure 16, IFNγR2 

neutralization increased the severity of keratitis and reduced flagellin-induced protection (Fig. 

16A).  Immunohistological staining of IFNγR2-neutralized and infected corneas revealed that 

while isotype IgG had no effects on CXCL10 expression, IFNγR2 neutralization attenuated 

infection-induced and flagellin-augmented expression of CXCL10 (Fig. 16B) in epithelia; there 

appeared a large influx of immune cells that expressed CXCL10 in PA-infected, IFNγR2-

neutralized corneas. Moreover, IFNγR2 neutralization resulted in significantly reduced bacterial 

clearance (Fig 16C), increased neutrophil infiltration (Fig. 16D), and elevated CXCL2 (Fig. 16E) 

expression compared to isotype IgG injected controls.  

Using the same approach, we depleted NK cells with antibody against NK1.1 (Fig. 17). 

Similarly, the isotype matched antibody had no detectable effects on PA keratitis and on 

flagellin-induced protection. Depletion of NK cells resulted in an increase in the severity of PA 

keratitis and impaired flagellin-induced protection, including increased opacity (Fig. 17A), 
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bacterial burden (Fig. 17B), PMN infiltration (Fig. 7C), and CXCL2 expression (Fig. 17D). As 

expected, the infection-induced and flagellin-augmented expressions of IFNγ, IRF1, and 

CXCL10 was greatly suppressed by NK cell depletion as detected by realtime PCR (Fig. 17E) 

and by ELISA for CXCL10 (Fig. 17F). These results support the importance of IFNγ and NK 

cells in the enhanced expression of CXCL10 and corneal innate immunity against P. aeruginosa 

in vivo. 

3.5 DISCUSSION 

Our study of screening for TFs differentially expressed in PAO1-infected primary HCECs 

revealed that IRF1 expression was increased in response to bacterial challenge but pre-

exposure of cells to a low dosage of flagellin for 24h prior to PAO1 challenge caused a dramatic 

decrease in IRF1 expression.  While our in vitro study of cultured human primary CECs 

revealed suppressive effects of flagellin on IRF1 expression, our in vivo study using B6 mice 

indicates an enhanced expression of IRF1 as well as its target gene CXCL10 in flagellin-

pretreated CECs exposed to PAO1 for 6 h. The expression of CXCL10 was primarily in 

epithelia. To understand the role of IRF1 in infectious keratitis, we used the mouse model of P. 

aeruginosa keratitis using ATCC 19660 as pathogen. Our results indicated that IRF1 deficiency 

increased cornea susceptibility to P. aeruginosa infection and abolished flagellin-induced 

protection against this common keratitis-causing pathogen in B6 mice. To assess if CXCL10 is 

an effector gene of IRF1, we neutralized CXCL10 and found indeed that CXCL10 is required for 

optimal flagellin-induced protection.  To understand how the IRF1-CXCL10 axis is regulated, we 

blocked IFNγ signaling by neutralizing its receptor and found that the infection-induced and 

flagellin-augmented epithelial expression of CXCL10 was dampened in anti-IFNγR2-, but not 

the control antibody-treated corneas.  IFNγR2 neutralization also increased the severity of P. 

aeruginosa keratitis and significantly reduced flagellin-induced protection.  Moreover, as NK 

cells are known to be the major source of IFNγ in the cornea (Souza-Fonseca-Guimaraes et al., 
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2012), depletion of NK cells had similar effects as IFNγR2 neutralization on the severity of P. 

aeruginosa keratitis and on flagellin-induced protection. The upregulated expressions of IFNγ, 

IRF1, and CXCL10, in NK depleted corneas were significantly dampened.  Taken together, our 

data showed that infection-induced and flagellin-augmented expression of CXCL10 in CECs is 

IRF1-dependent and plays a major role in the elimination of inoculated P. aeruginosa and that 

NK cells and their production of IFNγ are critical for flagellin-induced protection and innate 

defense against P. aeruginosa in the cornea.   

IRF1 is one of the members of the IRF family of TFs consisting of nine members: IRF1-9 

(Colonna, 2007; Honda and Taniguchi, 2006b; Savitsky et al., 2010b).  IRFs were first 

characterized as IFN-inducible TFs, but recent studies have revealed their involvement in the 

regulation of gene expression in responses triggered by TLRs (Battistini, 2009; Savitsky et al., 

2010a).  In the mouse model of P. aeruginosa infection, we showed that P. aeruginosa infection 

resulted in the upregulation of IRF1 and this upregulation, in contrast to in vitro data, was further 

augmented by flagellin pretreatment. This upregulation is important for controlling P. aeruginosa 

keratitis.  While it is mostly studied in viral infection, IRF1 has been shown as a master regulator 

of mycobacteria-induced immunopathology, involved in the development of centrally necrotizing 

granulomatous lesions in the lung (Aly et al., 2009; Yamada et al., 2002). Interestingly, our 

results showed that IRF1 mediated gene expression plays a protective role in P. aeruginosa 

keratitis.  IRF1 deficiency resulted in much severe keratitis and the corneas of IRF1-/- mice 

were perforated within 3 days while in WT B6 mice the pathology will need 5 or more days to be 

developed. Interestingly, while PMN infiltration is significantly higher than the WT mice, the 

bacterial burden and the levels of CXCL2 are similar between IRF1-/- and WT B6 mice, 

suggesting excessive infiltration of PMNs are a major pathogenic factor for cornea tissue 

destruction.  Importantly, although it is significantly compromised in IRF1-/- mice, the flagellin 

induced protection remains strong in IRF1-/- mice as the severity of keratitis, evidenced by 
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increased corneal opacity, bacterial burden, PMN infiltration and the expression of CXCL10 in 

IRF1-/- mice compared to WT B6 mice.  Our study further revealed that the epithelial expressed 

CXCL10 is a major effector of IRF1-mediated protection in the corneas.  

CXCL10 is a member of the interferon-inducible tripeptide motif Glu-Leu-Arg-negative 

(ELR−) CXC chemokines (Cole et al., 2001a).  It, along with CXCL9 and CXCL11, signals 

through a G-protein-coupled receptor, CXCR3, and functions primarily in the recruitment of 

activated CD4+ and CD8+ T cells, NK cells, and plasmacytoid dendritic cells to sites of infection 

and inflammation (Cao and Liu, 2007; Mohan et al., 2005). In addition to their roles in leukocyte 

recruitment, CXCL9, CXCL10, and CXCL11 exert direct antimicrobial effects that are 

comparable to the effects mediated by cationic antimicrobial peptides, including defensins (Cole 

et al., 2001b). Our study showed that flagellin pretreatment greatly augmented infection-induced 

upregulation of CXCL10 in CECs in an IRF1-dependent manner. 

The epithelium-expressed CXCL10 may play a key role in bacterial clearance due to its 

antimicrobial properties at the early stage of infection.  In our epithelial scratch model, 

pathogens were inoculated on epithelial injury sites with intact or minimally injured basement 

membrane.  It was reported that the basement membrane possesses physical barrier effects, 

resulting in the trapping of pathogens in epithelium for several hours (Alarcon et al., 2009; 

Alarcon et al., 2011), allowing the elevated CXCL10, along with other antimicrobial peptides 

such as β-defensins (Augustin et al., 2011) and LL-37 (or cathelicidin-related antimicrobial 

peptide (CRAMP)) (Huang et al., 2006; Kumar et al., 2010a), to kill these invading pathogens 

before they reach the stromal layer. Indeed, neutralizing CXCL10 significantly diminished but 

not totally abolished flagellin induced protection, including much reduced bacterial burden, PMN 

infiltration and CXCL2 expression. Hence, we conclude that flagellin-induced expression of 

CXCL10 contributes to innate defense activated by topical flagellin and epithelium-expressed 

CXCL10 is involved in pathogen clearance in the corneas.    
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Surprisingly, in contrast to in vitro results, flagellin pretreatment in B6 mice further 

enhanced the expression of IRF1.  We suspected that this disparity is due to the molecular 

and/or cellular component(s) that are present in the mouse cornea and/or tears in vivo but not in 

cultured human CECs. One such factor is IFNγ which is known not to be expressed in epithelial 

cells. Our recent study of genome-wide cDNA array revealed a large number of interferon-

induced genes in the epithelial cells of flagellin-pretreated and PAO1-infected B6 mouse 

corneas (Gao et al., 2013).  Using IFNγ receptor neutralizing antibody, we showed that 

inactivation of IFNγ signaling increased the severity of P. aeruginosa keratitis in the control 

corneas and significantly reduced flagellin-induced protection to a level similar to non-treated 

corneas. As expected, infection-induced and flagellin-augmented expressions of IRF1 and 

CXCL10 were dampened in IFNγ receptor-neutralized corneas.   

What are the cellular sources of IFNγ in infected corneas?  NK cells are known to 

produce large amount of IFNγ (Goodridge et al., 2009; Quaranta et al., 2007). In a parallel 

study, we demonstrated that epithelial expressed CXCL10 may target CXCR3 expressing NK 

cells (Liu et al, under review in Mucosal Immunology).  We then used neutralizing antibody to 

deplete NK cells by subconjectival injection and assess its effects on P. aeruginosa and on the 

expression of IFNγ, IRF1 and CXCL10, an axis of IFNγ signaling pathway. While depletion of 

NK cells had similar effects on the severity of P. aeruginosa keratitis as IFNγ receptor 

neutralization, NK depletion indeed significantly affected the expression of all 3 genes.  

Intriguingly, the most affected is CXCL10, the effector of the axis.  The suppression of CXCL10 

expression in flagellin-pretreated and P. aeruginosa-infected corneas by IFNγ neutralization and 

NK cell depletion may provide an explanation for diminished protection from microbial keratitis in 

these corneas.  Nevertheless, our results indicate that the involvement of infiltrated NK cells, 

through production of IFNγ, in mediating IRF1 expression in the cornea.  In cultured cells, IRF1 
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is induced by NF-κB, which was blunted by prolonged exposure to flagellin. Lack of IFNγ in cell 

culture resulting in IRF1 being reprogrammed in vitro, but not in vivo.   

Taken together, our data suggests that IRF1 is an important responsive TF in corneal 

innate immunity and in flagellin-induced protection mediated by CXCL10 expression.  The much 

elevated epithelial production of CXCL10 may contribute to flagellin-elicited corneal protection 

by recruiting NK cells to the site of infection and by acting as an AMP that directly kills invading 

pathogens.  Moreover, NK cells that infiltrated in the cornea in the early phase of infection are 

required for sustaining CXCL10 expression through production of IFNγ that induces IRF1 

expression through an NFκB independent mechanism, and thus play an important role in 

corneal innate defense and more apparently in flagellin induced mucosal protection against P. 

aeruginosa infection. 
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Figure 12. Detection of CXCL10 expression in cornea l epithelia of B6 WT and IRF1 -/- mice.  
WT and IRF1-/- B6 mice were topically pretreated with 500 ng flagellin in 5 µl PBS, a dosage we 
showed to induce protection in B6 mice, or 5 µl PBS for 24h, and then infected with PAO1 at 105 
cfu for 6h. The epithelium was collected and RNA isolated for semi-quantitative RT-PCR (A) and 
quantitative real-time PCR (B) analysis of CXCL10, mBD3 and/or MIP-2. GAPDH was used as 
the internal control. P values were generated using unpaired Student’s t test (* P<0.05). The 
figure is a representative of six corneas (n = 3 mice) per condition. 
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Figure 13. Distribution of CXCL10 expression in cor neal epithelia of B6 WT and IRF1-/- 
mice.  WT and IRF1-/- B6 mice were topically pretreated with 500 ng flagellin in 5 µl PBS, a 
dosage we showed to induce protection in B6 mice, or 5 µl PBS for 24h, and then infected with 
PAO1 at 105 cfu for 6h. The whole cornea was snap-frozen in OCT, sectioned, stained with 
mouse anti-CXCL10 antibody and examined with fluorescence microscopy (magnification at 
40x, DAPI used to stained the nuclei) or confocal microscopy (maginification at 80x). The figure 
is a representative of six corneas (n = 3 mice) per condition.  
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Figure 14. IRF1 deficiency increased the severity o f Pseudomonas keratitis and 
attenuated flagellin-induced protection in B6 mice.   WT or IRF1-/- B6 mice were topically 
pretreated with 500 ng flagellin or PBS for 24h, and then infected with ATCC 19660 at 104 cfu 
for 3 days (A). The whole cornea was collected for viable bacterial count (B), MPO activity 
assay and MIP-2 ELISA (C). P values were generated using unpaired Student’s t test (* P<0.05; 
** P<0.01). The figure is a representative of three independent experiments.  
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Figure 15. Neutralization of CXCL10 activity in the  cornea attenuated flagellin-induced 
protection in B6 mice.  WT mice were injected with neutralizing anti-CXCL10 antibody (3 ug in 
5 µl) or isotype rabbit IgG 24h prior to topical PBS or flagellin pretreatment, and then infected 
with ATCC19660 at 104 cfu. At 3 dpi the corneas were photographed (A) and then excised and 
homogenized for viable bacterial count (B), MPO activity assay and MIP-2 ELISA (C). P values 
were generated using unpaired Student’s t test (** P<0.01). The figure is a representative of two 
independent experiments. 
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Figure 16. Neutralization of IFN γR2 activity in the cornea attenuated epithelial CXC L10 
production and flagellin-induced protection in B6 m ice.  WT mice were injected with 
neutralizing anti-IFNγR2 antibody (3 ug in 5 µl) or isotype rabbit IgG 24h prior to topical PBS or 
flagellin pretreatment, and then infected with ATCC19660 at 104 cfu. At 20h post-infection the 
corneas were photographed (A) and then harvested for immunohistochemistry analysis of 
CXCL10 expression (B) or bacterial count (C), MPO activity assay (D) and MIP-2 ELISA (E). P 
values were generated using unpaired Student’s t test (* P<0.05; ** P<0.01). The figure is a 
representative of 6 corneas (n = 3 mice) per condition. 
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Figure 17. Neutralization of NK cells in the cornea  blocked IFN γ, IRF1, and CXCL10 
expression and compromised flagellin-induced cornea l protection in B6 mice.  WT mice 
were injected with NK cell neutralizing anti-NK1.1 antibody (3 ug in 5 µl) or isotype rabbit IgG 
24h prior to topical PBS or flagellin pretreatment, and then infected with ATCC19660 at 104 cfu. 
At 20h post-infection the corneas were photographed (A) and then harvested for bacterial count 
(B), MPO activity assay (C), MIP-2 (D) and CXCL10 (F) ELISA, real-time PCR analysis of IFNγ, 
IRF1, and CXCL10 expression (E). P values were generated using unpaired Student’s t test (** 
P<0.01).  The figure is a representative of 6 corneas (n = 3 mice) per condition. 
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Table 4. Mouse primer sequences used for PCR  

Gene Primer Sequence (5’→3’) 
Product 
size (bp) 

IFNγ 
Forward 

Reverse 

ACGGCACAGTCATTGAAAGC 

TGCTGATGGCCTGATTGTCTT 
198 

IRF1 
Forward 

Reverse 

CAGAGGAAAGAGAGAAAGTCC 

CACACGGTGACAGTGCTGG 
208 

CXCL10 
Forward 

Reverse 

ATGAACCCAAGTGCTGCCGTC 

TTAAGGAGCCCTTTTAGACCTTT 
297 

CXCL2 
Forward 

Reverse 

AGTTTGCCTTGACCCTGAAGCC 

TGGGTGGGATGTAGCTAGTTCC 
466 

BD3 
Forward 

Reverse 

GCTTCAGTCATGAGGATCCATTACCTTC 

GCTAGGGAGCACTTGTTTGCATTTAATC 
318 

GAPDH 
Forward 

Reverse 

ACCACAGTCCATGCCATCAC 

TCCACCACCCTGTTGCTGTA 
452 
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CHAPTER 4 

ACTIVATING TRANSCRIPTION FACTOR 3 IN FLAGELLIN-INDU CED REPROGRAMMING: 

POTENTIAL ROLE IN THE REGULATION OF INFLAMMATION AN D BACTERIAL 

CLEARANCE IN CORNEA AGAINST PSEUDOMONAS AERUGINOSA INFECTION 

 

4.1 ABSTRACT 

We previously identified Activating Transcription Factor (ATF) 3 as one of the most 

drastically affected genes by flagellin pretreatment in P. aeruginosa challenged human corneal 

epithelial cells (CEC). Next we sought to understand the functional role of ATF3 in mucosal 

innate protection against infections in vivo. Consistent with in vitro results, flagellin augmented 

the P. aeruginosa-induced epithelial expression of ATF3 in CECs in WT at 6 hpi. ATF3 

deficiency markedly increased the severity of P. aeruginosa keratitis, indicated by significantly 

increased bacterial count, neutrophil infiltration and CXCL2 expression. In addition, ATF3-null 

mice displayed compromised flagellin-induced corneal protection compared to PBS-pretreated 

ATF3-/- littermates at 3 dpi. Together, our results indicate that ATF3 plays a role in the corneal 

innate immune response by regulating inflammation and bacterial clearance, and ATF3 is 

indispensable to maintain the protective properties of flagellin against bacterial keratitis. 
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4.2 INTRODUCTION 

Epithelial innate immune defense against microbial pathogens rely on membrane-

associated pattern recognition receptors. Toll-like receptors (TLRs)  recognize pathogens 

extracellularly by binding to specific microbial patterns occurring at the cell surface  (Tamura et 

al., 2008b). TLRs recognize microbial lipids (TLR1, -2, -4, -6, and -10), viral or bacterial DNA 

(TLR9), or viral single- or double-stranded RNA (TLR3 and TLR7/8), and bacterial protein 

(flagellin/TLR5). The transcriptional program that is activated by pathogen exposure involves a 

plethora of molecular components, including cytokines, chemokines, and cell cycle/apoptosis 

regulatory proteins (Huang et al., 2001). In these transcriptional events, the biological roles and 

activation of transcription factors belonging to the interferon (IFN) regulatory factors (IRFs) and 

nuclear factor of κB (NF-κB) families have been previously studied. 

Activating transcription factor 3 (ATF3), a 21-kDa (181 amino acid residues) nuclear 

protein belongs to the basic-region leucine zipper (bZIP) transcription factor family of proteins.  

ATF3 binds the ATF/cAMP response element (CRE) of many viral and cellular promoters to 

regulate its downstream target genes. Several genes have been identified as ATF3 target 

genes, including CCNE2 (Cyclin E2), CD82 (KAI1), DDIT (GADD153), LDLR (LDL receptor), 

SNAI1, and TP53 genes (Hagiya et al., 2011; Lim et al., 2011; Liu et al., 2011b; Yan et al., 

2011). In quiescent cells, ATF3 expression is maintained at low levels (Lu et al., 2006), but it is 

dramatically induced upon exposure of cells to stress signals, which include cytokines, 

genotoxic agents, infections, nerve injury, tissue damage or physiological stress (Hai et al., 

1999). Emerging evidence has implicated the importance of ATF3 in the host’s innate defense 

against invading pathogens and in ameliorating inflammation. ATF3 induction occurs in 

response to a wide range of TLRs, as treatment of bone marrow macrophages with 

lipopolysaccharide (LPS; TLR4), pIC (TLR3), CpG-ODN (TLR9), pIC/CpG-ODN (TLR3 and 

TLR9), and zymosan (TLR2/6 heterodimer) was shown to significantly elevate ATF3 protein 
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expression (Whitmore et al., 2007). Accordingly, atf3-deficient primary macrophages produced 

elevated amounts of interleukin (IL)-6, IL-12p40, and tumour necrosis factor (TNF)-α cytokines 

in response to a range of activated TLRs (Gilchrist et al., 2006; Whitmore et al., 2007). This 

identified ATF3 as a transcriptional regulator of TLR signaling, possibly through a negative 

feedback loop response to suppress TLR-mediated cytokine expression in macrophages 

(Thompson et al., 2009). However, the role of ATF3 in TLR5-mediated inflammatory response 

has not been previously documented and warrants investigation. 

In light of these reports, we predicted the involvement of ATF3 in regulating TLR5-

mediated epithelial immune response, and also in flagellin/TLR5-induced cell reprogramming. 

Our results show that ATF3 is critical to regulate TLR5-mediated inflammatory response and 

bacterial clearance and is required to maintain the protective properties of flagellin against P. 

aeruginosa keratitis. 
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4.3 MATERIALS AND METHODS 

Reagents and antibodies 

Anti-human and anti-mouse ATF3 antibodies were purchased from Santa Cruz Biotech 

(Santa Cruz, CA). Anti-β-actin antibody were purchased from Sigma (St. Louis, MO) and 

Peprotech (Rocky Hill, NJ), respectively.  Horseradish peroxidase (HRP)-conjugated secondary 

antibodies were from Bio-Rad (Hercules, CA). FITC-conjugated secondary antibodies were 

from Jackson ImmunoResearch (West Grove, PA).  

Animals 

Wild-type (WT) C57BL6 (B6) mice (8 weeks of age; 20–24 g weight) were purchased 

from The Jackson Laboratory (Bar Harbor, ME). ATF3-/- mouse were a gift from Dr. Tsonwin 

Hai of Ohio State University (Allen-Jennings et al., 2002; Zmuda et al., 2010) and bred in-

house. All investigations conformed to the regulations of the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research, the National Institutes of Health, and the 

guidelines of the Animal Investigation Committee of Wayne State University. 

Bacterial strains and flagellin 

Two strains of P. aeruginosa PAO1 and ATCC 19660, were used in the study.  ATCC 

19660, a toxic strain, can infect the B6 mouse corneas at 104 cfu per cornea and cause severe 

keratitis and corneal perforation at about day 5, while 108 cfu of PAO1 are required for mild 

keratitis. To illustrate the profound protection induced by flagellin we have been using ATCC 

19660.  However, our interest is in the early innate immune response in the cornea, particularly 

the epithelium, which has been shown to play a key role in innate immunity and in shaping 

adaptive immunity as well.  ATCC 19660 usually causes epithelial cell death in vitro and 

epithelial sheet loss in vivo.  To that end, we had to use PAO1 with 10 fold increase in cfu (105) 

to challenge B6 mouse corneas and assess host responses at 6 h by isolate epithelial cells for 
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PCR analysis or immunohistochemistry. Flagellin was prepared from PAO1 using a previously 

described method (Zhang et al., 2003b).  P. aeruginosa were grown in tryptic soy broth (Sigma-

Aldrich) at 37°C until absorbance at 600 nm reached  O.D. 0.5. The bacterial culture was 

centrifuged at 6000 × g for 10 min. Bacteria were washed in PBS and resuspended in PBS and 

then used to infect mouse corneas at 105 for PAO1 and 104 cfu for ATCC19660, respectively. 

ELISA measurement of cytokines 

To measure mouse CXCL2, corneal extracts were prepared by homogenization in 200µl 

phosphate-buffered saline (PBS) with a glass micro tissue grinder, followed by centrifugation at 

14,000 × g for 10 min. Protein concentration of the corneal lysate was determined by Micro 

BCATM protein assay kit (Pierce) and equal amounts of protein was used to perform ELISA 

according to the manufacturer's instructions (R & D Systems). 

RNA isolation and RT-PCR 

Total RNA was isolated from mice corneal epithelia or whole cornea using RNeasy Mini 

Kit (Qiagen, Valencia, CA) according to each manufacturer’s instructions. 1 µg of total RNA was 

reverse-transcribed with a first-strand synthesis system for RT-PCR (SuperScript; Invitrogen). 

cDNA was amplified by PCR using primers for mouse ATF3 and beta-actin (Table 5). The PCR 

products and internal control GAPDH were subjected to electrophoresis on 1.5% agarose gels 

containing ethidium bromide. Stained gels were captured using a digital camera and band 

intensity was quantified using 1D Image Analysis Software (EDAS 290 system; Eastman Kodak, 

Rochester, NY).  

PMN infiltration assay 

Measurement of myeloperoxidase (MPO) activity was employed to determine PMN 

infiltration in the cornea as previously described.(Kumar et al., 2008) The corneas were excised 

from enucleated eyes at 3 dpi and homogenized in 1 ml of hexadecyltrimethylammonium 

bromide (HTAB) buffer (0.5% HTAB in 50 mM phosphate buffer, pH 6.0). The samples were 
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then subjected to four freeze-thaw cycles, followed by centrifugation at 16,000 × g for 20 min. 

Each supernatant was mixed with 50 mM phosphate buffer (pH 6.0) containing 16.7 mg/ml O,O-

dianisidine hydrochloride and 0.0005% hydrogen peroxide at a 1:30 ratio to obtain a total 

volume of 3 ml. The change in absorbance at 460 nm was monitored continuously for 5 min. 

The results were expressed in units of MPO activity/cornea. 

Bacterial CFU determination in the cornea 

Corneas (n=5 to 7/group) from PA -infected mice were collected, and the numbers of 

viable bacteria were determined by plate count method. Individual corneas were homogenized 

in sterile PBS, and aliquots (100 µl) of serial dilutions were plated onto Pseudomonas isolation 

agar (BD biosciences) plates in triplicate. The plates were incubated overnight at 37°C and 

bacterial colonies were counted. The results are expressed as the mean number of cfu/cornea. 

Immunohistochemistry 

Mouse eyes were enucleated and embedded in Tissue-Tek (Miles Inc., Elkhart, IN) 

optimal cutting temperature (OCT) compound and frozen in liquid nitrogen. Sections (10-µm 

thick) were cut and mounted to poly-lysine-coated glass slides. After a 10-minute fixation in 4% 

paraformaldehyde, slides were blocked with 10 mmol/L sodium phosphate buffer containing 2% 

BSA for 1 hour at room temperature. Sections were then incubated with primary antibody for 

mouse ATF3 5 µg/mL. For fluorescence microscopy, the slides were incubated with anti-rabbit 

IgG conjugated with fluorescein isothiocyanate (Jackson ImmunoResearch Laboratories, West 

Grove, PA, 1:100), and then mounted with Vectorshield mounting medium containing DAPI 

mounting media.  

Statistical analysis 

An unpaired, two-tailed Student t test was used to determine statistical significance for data 

from bacterial count, cytokine ELISA, MPO assay, real-time PCR. Mean differences were 
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considered significant at a P value of <0.05. Experiments were repeated at least twice to ensure 

reproducibility. 

4.4 RESULTS 

Flagellin pretreatment enhanced the expression of ATF3 in mouse corneal epithelium 

In Chapter 2 we used the transcription factor RT2 Profiler PCR Array (SAbiosciences) to 

compare the expression of TFs in human CECs (hCECs) with or without flagellin pretreatment 

(50ng/ml 24h) in response to P. aeruginosa challenge. ATF3 mRNA was upregulated the 

highest (42 fold) in response to bacterial challenge compared to unstimulated controls. Flagellin 

pretreatment further elevated ATF3 mRNA expression in response to P. aeruginosa to 61.5 fold.  

To investigate whether flagellin-pretreatment can also enhance ATF3 mRNA and protein 

expression in the mouse corneal epithelium in vivo, we conducted PT-PCR, Western blot and 

immunohistochemsitry of mouse corneal epithelium with PBS or flagellin pretreatment for 24 hrs 

and subsequently rechallenged with P. aeruginosa (104 cfu, strain ATCC 19660) for 6hrs (Fig. 

18). PBS or flagellin pretreatment alone for 24h did not result in altered ATF3 mRNA (Fig. 18A) 

or protein expression (Fig. 18B). Immunohistochemical analysis showed ATF3 to be expressed 

in the epithelium at this time point (Fig. 18C). In accordance with the human CEC PCR array 

results, flagellin-pretreatment enhanced ATF3 expression in response to P. aeruginosa 

challenge.at both mRNA and protein levels by 1.58 fold and 1.51 fold in measured densitometry, 

respectively (n=3).  

ATF3-/- mice exhibit severe inflammation and enhanced expression of CXCL2 and MPO 

activity 

To examine the effects of ATF3 on P. aeruginosa keratitis and flagellin-induced corneal 

protection, ATF3-/- mice were infected with P. aeruginosa (ATCC 19660 at 104 cfu/cornea) after 

pretreatment with PBS or 500ng flagellin for 24 hrs (Fig. 19).  We previously showed in B6 mice 
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that 500 ng/eye flagellin was the minimal dosage to induce maximal protection in the cornea 

(Kumar et al., 2008).  Disease progression was monitored daily and all experiments were 

terminated at 3 dpi as the corneas of ATF3-/- mice exhibited signs of perforation at 3 days post-

infection (dpi) (Fig. 19A).  ATF3-/- mice displayed more severe keratitis at 3 dpi compared to WT 

B6 mice and increased PMN infiltration assessed by MPO assay.  Bacterial burden was 10 fold 

higher in PBS pretreated ATF3-/- mice than their WT counterparts (Fig. 19).  As shown 

previously, topical flagellin protected the corneas of WT B6 mice from PA infection.  Specifically, 

no bacteria were recovered and reduced PMN infiltration and CXCL2 expression was markedly 

diminished in flagellin-pretreated B6 corneas at 3dpi (Fig. 19C). However, flagellin pretreatment 

failed to protect ATF3-/- corneas from infection, as bacterial count was 107 fold higher than 

flagellin-pretreated WT corneas. In addition, the corneas from these mice were heavily opaque 

and contained large amounts of PMN infiltration, and elevated expression of CXCL2.  However, 

compared to PBS-pretreated ATF3-/- mice, flagellin-pretreated littermates displayed reduced 

bacterial burden, PMN infiltration, and CXCL2 concentration, suggesting flagellin-induced 

protection was only partially attenuated in ATF3-deficient mice. Intriguingly, while flagellin 

induces similar protection against P. aeruginosa infection in the cornea and in the lung and this 

protection requires the expression of CRAMP (mouse homolog of LL37), ATF3 knockout was 

protective in P. aeruginosa lung infection. Comparative analyses of the cornea and the lung 

infection in ATF3 knockout mice may reveal tissue specific defense mechanisms which currently 

are lacking.  This however is out the scope of this dissertation.    

4.5 DISCUSSION 

Flagellin pretreatment of the mouse corneal epithelium has a profound effect on the 

innate immune response of the cornea in against a variety of pathogens (Gao et al., 2011a; 

Kumar et al., 2010a). We predicted that this profound effect of flagellin is mediated by 

reprogramming which involves many transcription factors (TF) in corneal epithelial cells, and in 
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Chapter 3 and 4 we were able to decipher the IRF1-CXCL10 axis as playing a critical role in 

bacterial killing and clearance in the cornea. However, transcriptional reprogramming in cells 

does not occur with only a single TF, but rather with multiple TFs. In chapter 2, we used the 

real-time PCR Superarray to indentify transcription factors IRF1 and ATF3 being reprogrammed 

by flagellin pretreatment in hCECs. In this Chapter, we sought to understand the role of ATF3 in 

regulating corneal innate immunity and flagellin-induced CEC reprogramming by flagellin 

stimulation as ATF3 is an important transcription factor that shapes the host immune response 

to pathogens (Hai et al., 2010). We found that flagellin pretreatment of the mouse cornea 

differentially regulated the expression of ATF3 by augmenting its expression, and enhancing the 

immunity of the corneal epithelium against bacterial infection. Unlike IRF1, the enhanced 

expression of ATF3 in the mouse corneal epithelium was without the influence of 

cyto/chemokines from infiltrating cells as the same enhancement was observed in a pure 

population of hCECs in vitro. However, we cannot rule out the influence of autocrine/paracrine 

factors, such as IL-6 (Hai et al., 1999), that may contribute to enhanced ATF3 expression. 

The lack of ATF3 expression in vivo proved to be detrimental to corneal innate immunity, 

evidenced by more severe opacity of the cornea, neutrophil infiltration (5 fold) and CXCL2 (2 

fold) expression compared to WT mice. This observation is in accord with previous findings that 

ATF3 functions as a negative regulator of inflammation and hyperresponsiveness (Gilchrist et 

al., 2008; Whitmore et al., 2007). In addition, the 10-fold increase in viable bacterial count of 

ATF3-deficient mice compared WT mice implies that the bacterial killing and clearing function of 

epithelial and/or infiltrating immune cells in the cornea have been compromised. By 3 dpi 

neutrophils and macrophages have infiltrated the cornea (Hazlett, 2004b) and previous reports 

describing the role of ATF3 in immune cell function may explain the uncontrolled inflammatory 

response in ATF3 knockout mice (Gilchrist et al., 2008; Rosenberger et al., 2008; Whitmore et 

al., 2007). Maruyama et al. demonstrated ATF3 to negatively regulate neutrophil differentiation 

(Maruyama et al., 2012), and lack of ATF3 may result in neutrophil overproduction in the host in 
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response to infection. In addition, ATF3 is involved in the negative regulation of TLR signaling 

pathways by suppressing proinflammatory cytokines in macrophages (Whitmore et al., 2007), 

which may explain the increase in CXCL2 expression in ATF3-null mice. In epithelial cells 

bacterial challenge induced the ATF3-dependent stress response and reprogramming of 

transcriptional response to the pathogen (Tattoli et al., 2012). These findings help us to 

understand the uncontrolled inflammatory response in the cornea resulting from the lack of 

ATF3 expression. 

Aside from its role as a transcription factor that regulates gene expression, emerging 

evidence indicates that ATF3 can also regulate cellular functions through mechanisms beyond 

transcriptional regulation (Yan et al., 2005). ATF3 blocks the ubiquitination and degradation of 

p53, leading to up-regulation of p53 stability and activity, independent of ATF3 transcriptional 

activity (Mo et al., 2010; Yan et al., 2005). Furthermore, p53 is known to negatively regulate the 

activity of NF-κB (Ak and Levine, 2010), and lack of ATF3 may promote p53 inactivity leading 

to NF-κB hyperactivation, a combination that would inhibit epithelial and immune cell apoptosis, 

which is an essential mechanism to eliminate pathogens at the early stage of infection without 

emitting alarm signals (Ashida et al., 2011).  These reports may explain the heavy influx and 

lack of clearance of immune cells and increased bacterial load witnessed in ATF3-null mouse. 

In light of the important role of ATF3 in regulating inflammation and bacterial killing, we 

expected ATF3 to have also an essential role in flagellin-induced corneal protection, as flagellin-

induced cell reprogramming results in accelerated bacterial clearance and resolution of 

inflammation. Indeed, ATF3 expression was enhanced after flagellin pretreatment and 

subsequent infection compared to PBS-pretreated counterparts, in vitro and in vivo. ATF3 has 

been characterized as an “adaptive response” gene because it participates in various cellular 

processes to adapt to extra- and/or intracellular changes (Lu et al., 2007), and the lack of ATF3 

may compromise the ability of flagellin to reprogram epithelial cells and adapt to forthcoming 

pathogen attack. However, flagellin pretreatment of ATF3-null mice was still able to reduce 
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bacterial count, MPO activity and CXCL2 expression compared to PBS-pretreated littermates, 

which implies that flagellin-induced full protection requires the reprogramming of not only ATF3, 

but also other genes.  

In summary, ATF3 is an essential transcription factor that contributes to corneal innate 

defense by the suppression of inflammation and the enhancement of bacterial and immune cell 

clearance from the site of infection. ATF3 is a critical component of flagellin-induced cell 

reprogramming and corneal protection and may serve as a marker to measure the efficacy of 

therapeutic drugs in reducing inflammation and enhancing bacterial clearance. 
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Figure 18. Detection of ATF3 expression in corneal epithelia of B6 WT mice.  WT B6 mice 
were topically pretreated with 500 ng flagellin (in 5 µl PBS), or 5 µl PBS for 24h, and then 
infected with PAO1 at 105 cfu for 6h. The epithelium was collected and RNA isolated for semi-
quantitative RT-PCR (A) and Western blot (B) analysis of ATF3. Beta-actin was used as the 
internal control. For immunohistochemical detection of ATF3, the whole cornea was snap-frozen 
in OCT, sectioned, stained with mouse anti-ATF3 antibody and examined with fluorescence 
microscopy (magnification at 20x, DAPI used to stained the nuclei). The figure is a 
representative of six corneas (n = 3 mice) per condition.  
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Figure 19. ATF3 deficiency increased the severity o f Pseudomonas keratitis and 
abolished flagellin-induced protection in B6 mice.  WT or ATF3-/- B6 mice were topically 
pretreated with 500 ng flagellin or PBS for 24h, and then infected with ATCC 19660 at 104 cfu 
for 3 days (A). The whole cornea was collected for viable bacterial count (B), MPO activity 
assay and MIP-2 ELISA (C). P values were generated using unpaired Student’s t test (* P<0.05; 
** P<0.01). The figure is a representative of three independent experiments.  
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Table 5. Mouse primer sequences used for PCR  

Gene Primer Sequence (5’→3’) 
Product 
size (bp) 

ATF3 
Forward 

Reverse 

ATGATGCTTCAACATCCAGGC 

TTAGCTCTGCAATGTTCCTTC 
546 

β-actin 
Forward 

Reverse 

CGTGGGCCGCCCTAGGCACC 

TTGGCCTTAGGGTTCAGGGGGG 
443 
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CHAPTER 5 

CONCLUSIONS 

The innate immune response of the cornea is vital to maintaining corneal homeostasis 

and preserving vision against pathogens. The corneal epithelium plays a barrier function that 

separates the outside environment and contributes to host defense of the cornea. The ability of 

the corneal epithelium to recognize and respond to pathogens is attributed largely to the family 

of Toll-like receptors (TLRs), of which TLR5 plays a central role in detecting Gram-negative 

bacteria. Flagellin, the constituting protein of bacterial flagella, is the natural ligand of TLR5 

which can elicit a cascade of signal transduction pathways, resulting in the production of 

proinflammatory cytokines/chemokines and antimicrobial molecules. Although the production of 

proinflammatory cytokines is important for mediating the initial host defense against invading 

pathogens, an excessive host inflammatory response can be detrimental. Thus, TLR-mediated 

corneal inflammation is a double-edged sword that must be precisely regulated. 

Many studies have revealed that pre-exposure of TLR5 to flagellin causes cell 

reprogramming, which results in suppressed NF-κB activation and proinflammatory cytokine 

production in response to subsequent bacterial and fungal challenge in a variety of cells 

including epithelial cells. The purpose of this dissertation is to identify reprogramming of 

transcription factors caused by TLR5/flagellin pretreatment, and their target genes to better 

understand the mechanisms underlying flagellin-mediated corneal protection.  

In Chapter 2, we investigated flagellin-induced cell reprogramming of transcription 

factors in vitro using primary human corneal epithelial cells (hCECs) and identified IRF1 and 

ATF3 as the most heavily altered transcription factors. P. aeruginosa challenge of HCECs 

resulted in profound increase of IRF1 expression, but flagellin-pretreatment of HCECs almost 

eliminated its expression in response to the same pathogen. In addition, of the 9 IRF family 

members only IRF1 was upregulated and reprogrammed, indicating its specificity in response to 
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TLR5 activation. We searched the literature and found several target genes of IRF1, including 

iNOS, IL-12p35 and CXCL10. By knocking down IRF1 in HCECs using siRNA, we were able to 

identify CXCL10, but not iNOS or IL-12p35, as a target gene of IRF1, implying the specificity of 

the TLR5-IRF1-CXCL10 axis in HCECs.  In contrast to IRF1, ATF3 expression was enhanced 

by flagellin pretreatment, indicative of transcriptional reprogramming of its expression as well as 

its potential role as a regulator of reprogrammed gene expression. 

In Chapter 3 we sought to assess how IRF1 and CXCL10 expression are reprogrammed 

in mouse cornea, especially in the epithelium. To our supprise, we observed that flagellin 

pretreatment caused enhanced IRF1 and CXCL10 expression in the mouse corneal epithelium. 

This contrast between in vitro and in vivo results concerning IRF1 and CXCL10 expression led 

us to explore further the involvement of infiltrated cells in vivo.  We discovered that topical 

application of flagellin results in the accelerated infiltration of innate immune cells such as NK 

cells that produces IFNγ to sustain IRF1 and CXCL10 upregulation in vivo in response to 

infection.  We further demonstrated that NK cells are required for corneal innate defense and 

flagellin induced protection. These findings suggest that enhanced epithelial expression of IRF1-

CXCL10 witnessed in vivo by flagellin-induced reprogramming is caused by IFNγ secreted from 

accelerated infiltration of NK cells in the stroma (Fig. 20). 

In Chapter 4, we investigated the reprogramming of ATF3 in vivo, comparing its 

expression pattern to hCECs. In contrast to IRF1, the enhanced expression of ATF3 in hCECs 

by flagellin pretreatment was also observed in our animal model of Pseudomonas infection at 

both the mRNA and protein levels. With the use of ATF3 knockout mice we observed a 

hyperresponsive inflammatory response towards Pseudomonas infection, culminating in 

accelerated corneal perforation, decreased bacterial clearance, increased CXCL2 expression 

and neutrophil infiltration. Moreover, flagellin-pretreatment was not able to protect the corneas 

of ATF3-null mice. Although the inflammatory response was somewhat dampened compared to 
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PBS-pretreated ATF3-null mice, flagellin pretreated ATF3-null corneas displayed more severe 

inflammation than that of control WT mice. These results coincide with numerous previous 

reports citing the essential role of ATF3 as a negative regulator of inflammation. 

In conclusion, flagellin pretreatment of corneal epithelial cells reprograms the expression 

of epithelial IRF1 and ATF3, via different mechanisms, resulting in the enhancement of the 

innate immune response of the cornea. Both transcription factors play an indispensable role in 

protecting the cornea from bacterial infection and regulating infection associated inflammation, 

and may serve as important markers for the development of therapeutic drugs to treat and/or 

prevent bacterial keratitis. 

 

  



www.manaraa.com

84 

 

 

 

 

Figure 20. Schematic representation of the mechanisms of flagellin-induced protection of the 
cornea caused by the reprogramming of corneal epithelial cells. 
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ABSTRACT 

THE TRANSCRIPTIONAL REGULATION OF FLAGELLIN-INDUCED  INNATE 
PROTECTION OF THE CORNEA: ROLE OF IRF1 AND ATF3 

by 
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Degree:  Doctor of Philosophy 

Pre-exposure of the cornea to TLR5 ligand flagellin induces profound mucosal innate 

protection against infections by reprogramming gene expression.  This study explored the 

flagellin-induced modifications of transcription factor expression and function, specifically of 

IRF1 and ATF3 in corneal epithelial cells to elucidate the transcriptional mechanisms underlying 

the protective function of flagellin on the cornea.  

Initially we used Superarray to screen for transcription factors and identified Interferon 

Regulatory Factor (IRF) 1 and Activating Transcription Factor (ATF) 3 as the most drastically 

affected genes by flagellin pretreatment in P. aeruginosa challenged human corneal epithelial 

cells (CEC).  However, flagellin pretreatment had opposite effects on IRF1 (inhibition) and ATF3 

(enhancement) gene expression in response to P. aeruginosa, and other IRFs were not 

affected. To find the functional target gene of IRF1, we knocked-down IRF1 using siRNA and 

identified the pleiotropic chemokine CXCL10, but not IL12-p35 or iNOS, as a specific target.  

We then attempted to understand the role of IRF1 and CXCL10 in mucosal innate 

protection against infections in vivo. Flagellin augmented the P. aeruginosa-induced expression 

of CXCL10 in CECs in WT, but not in IRF1-/- mice at 6 hpi. IRF1 deficiency markedly increased 

the severity of P. aeruginosa keratitis and significantly attenuated flagellin-elicited protection 



www.manaraa.com

108 

 

 

 

compared to WT controls at 3 dpi. CXCL10 neutralization in the cornea of WT mice displayed 

similar pathogenesis to that of IRF1-/- mice. To understand the regulation of CXCL10 

expression in vivo, we used neutralizing antibodies to target IFNγ and its producer NK cells. The 

neutralization of IFNγ receptor or NK cells prevented flagellin-augmented IRF1 and CXCL10 

expression and increased the susceptibility to P. aeruginosa infection in mouse corneas. 

Together, our results indicate that IRF1 plays a role in the corneal innate immune response by 

regulating CXCL10 expression and that IFNγ-producing NK cells induces epithelial expression 

of IRF1, thus significantly contributing to the protection of the cornea from P. aeruginosa 

infection.  

Next we sought understand the functional role of ATF3 in mucosal innate protection 

against infections in vivo. Consistent with in vitro results, flagellin augmented the P. aeruginosa-

induced epithelial expression of ATF3 in CECs in WT at 6 hpi. ATF3 deficiency markedly 

increased the severity of P. aeruginosa keratitis, indicated by significantly increased bacterial 

count, neutrophil infiltration and CXCL2 expression. In addition, ATF3-null mice displayed 

compromised flagellin-induced corneal protection compared to PBS-pretreated ATF3-/- 

littermates at 3 dpi. Together, our results indicate that ATF3 plays a role in the corneal innate 

immune response by regulating inflammation and bacterial clearance, and ATF3 is indispensible 

to maintain the protective properties of flagellin against bacterial keratitis. 

In conclusion, flagellin pretreatment of corneal epithelial cells reprograms the expression 

of epithelial IRF1 and ATF3, via different mechanisms, resulting in the enhancement of the 

innate immune response of the cornea. Both transcription factors play a critical role in protecting 

the cornea from bacterial invasion and regulating inflammation, and may serve as important 

markers for the development of therapeutic drugs to treat and/or prevent bacterial keratitis. 
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